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Abstract
Analytic expressions of three-centre two-electron Coulomb and hybrid integrals
over B functions are obtained using the Fourier transform method thoroughly
explored by Steinborn’s group. These analytic expressions involve semi-infinite
integrals which are slowly convergent due to the presence of hypergeometric
and spherical Bessel functions in the integrands. We have proven that
these hypergeometric functions can be expressed as finite expansions and the
integrands involving these series satisfy all the conditions required to apply
the HD̄ approach which greatly simplifies the application of the nonlinear D̄-
transformation. This work presents a rapid and accurate evaluation of these
integrals, obtained by using a new approach, which we called SD̄. This new
method is based on the HD̄ and D̄ methods and some practical properties of
spherical Bessel, reduced Bessel and sine functions. TheSD̄ method has greatly
simplified the calculations, avoiding the long and difficult implementation of
the successive zeros of the spherical Bessel function and a method for solving
linear systems, which are required by HD̄ and D̄.

PACS numbers: 0230G, 0230R, 3115

1. Introduction

This paper continues a series of previous studies [1, 2], concerning the rapid and accurate
evaluation of molecular multicentre integrals to a high pre-determined accuracy for the
development of molecular electronic structure calculations over Slater-type orbitals (STOs)
[3, 4].

STOs constitute an important basis set for all calculations of physical properties of
molecules and solids, which use the linear combination of atomic orbitals (LCAO) approach
[5]. However, the systematic use of STOs has been prevented by the fact that their multicentre
integrals turned out to be extremely complicated. Gaussian-type orbitals (GTOs) were
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introduced by Boys [6] and successfully used in the LCAO calculations [6–8]. This is due to
the fact that GTOs can readily be translated. Unfortunately, these functions failed to satisfy two
pragmatic requirements for analytic solutions of the appropriate Schrödinger equation, namely
the cusp condition [9] and exponential decay at long distances [10]. As is well known, STOs
fulfil the cusp condition and decline exponentially for large distances like exact solutions of the
Schrödinger equation. This is why the use of STOs instead of GTOs reduces considerably the
number of molecular integrals that occur in an LCAO calculation (short expansions of atomic
orbitals are needed if STOs are used as basis functions).

In this paper, we use the so-called B functions [11–13]. Although these functions have a
more complicated mathematical structure than STOs, they have much more suitable properties
in multicentre integral problems [12, 14–17], among them being the exceptional simplicity of
their Fourier transforms [15, 18]. Note that STOs can be expressed as finite linear combinations
of B functions [13, 14].

The basis set of B functions is well adapted to the Fourier transform method [19–21]. This
method allowed analytic expressions to be developed for multicentre bielectronic integrals
[20, 21]. These analytic expressions involve semi-infinite very oscillatory integrals.

In the case of three-centre two-electron Coulomb and hybrid integrals over B functions,
the integrands involve hypergeometric series and spherical Bessel functions. We have shown
[22, 23] that these hypergeometric series can be expressed as finite expansions and that the
integrands of interest satisfy fourth-order linear differential equations of the form required to
apply the nonlinear D- [24] and D̄-transformations [25, 26]. We also shown the superiority of
these transformations over the alternatives using Gauss–Laguerre quadrature, the ε-algorithm
of Wynn [27] or Levin’s u transform [28], in evaluating these kinds of integrals. Unfortunately,
the calculations required by these nonlinear transformations present severe numerical and
computation difficulties. In previous work [23, 29, 30], we showed that the order of the linear
differential equation satisfied by a function f (x) of the form f (x) = g(x)jl(x), where jl(x)

denotes the spherical Bessel function of order l and g(x) = h(x) eφ(x), where h(x) and φ(x)

have asymptotic expansions in inverse powers of x as x → +∞, can be reduced to two by
keeping all the conditions required to apply D and D̄ fulfilled. This led to the HD and HD̄

methods which greatly simplified the calculations.
The aim of this work is to further simplify the application of the above methods as well

as to reduce the calculation times while maintaining the same high accuracy.
As is well known the numerical integration of oscillatory integrands is very difficult when

the oscillatory part is a (spherical) Bessel function [31, 32]. The main idea of this work is
to replace the spherical Bessel function by a simple trigonometric function (sin(x)) using
practical properties of reduced Bessel functions, involved in the analytic expressions of the
integrals of interest, and some properties of spherical Bessel and sine functions. This led to
the SD̄ method where the long and difficult implementation of the successive positive zeros of
jl(x) and a method for solving linear systems, which are very time consuming and are required
by HD̄ and D̄, are avoided. In the SD̄ approach, the use of Cramer’s rule to calculate the
approximations of semi-infinite highly oscillatory integrands was made possible by the fact
that the zeros of the sine function are equidistant.

The numerical results given in the appendix show the efficiency of the new approach in the
evaluation of the integrals of interest. The numerical evaluation of the semi-infinite integrals
are obtained for s = 0.001 and 0.999. In the regions where s is closer to 0 or 1, the oscillations
of the integrands become very rapid. Indeed, when we make the substitutions s = 0 or 1,
the rapid oscillations of the spherical Bessel function cannot be damped and suppressed by
the exponentially decreasing function k̂ν involved in the integrand. This is due to the fact that
when s = 0 or 1, the argument of the reduced Bessel function k̂ν becomes a constant. It should
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also be mentioned that the regions where s is close to 0 or 1 carry a very small weight due to
the factors si2(1 − s)i1 in the integrands [33–36].

2. General definitions and properties

The three-centre two-electron Coulomb integral over B functions is

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�R, �R′

[
B

m1
n1,l1

(
ζ1, �R − −→

OA
)]∗ [

B
m3
n3,l3

(
ζ3, �R′ − −→

OB
)]∗

× 1

| �R − �R′|B
m2
n2,l2

(
ζ2, �R − −→

OA
)
B

m4
n4,l4

(
ζ4, �R′ − −→

OC
)

d �R d �R′ (1)

where A, B and C are three arbitrary points of the Euclidean space E3, while O is the origin
of the fixed coordinate system.

The hybrid integral over B functions is

Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�R, �R′

[
B

m1
n1,l1

(
ζ1, �R − −→

OA
)]∗ [

B
m3
n3,l3

(
ζ3, �R′ − −→

OA
)]∗

× 1

| �R − �R′|B
m2
n2,l2

(
ζ2, �R − −→

OA
)
B

m4
n4,l4

(
ζ4, �R′ − −→

OB
)

d �R d �R′ (2)

where A and B are two arbitrary points of the Euclidean space E3, while O is the origin of the
fixed coordinate system.

The B function is defined as follows [12, 13]:

Bm
n,l(ζ, �r) = (ζ r)l

2n+l(n + l)!
k̂n−1/2(ζ r)Y

m
l (θ �r , ϕ �r ). (3)

The B function can only be used as an LCAO basis functions if n ∈ N holds. For
−l � n � 0, a B function is singular at the origin, and if n = −l − ν with ν ∈ N holds, then
a B function is no longer a function in the sense of classical analysis but a derivation of the
three-dimensional Dirac delta function [37].

Ym
l (θ, ϕ) denotes the surface spherical harmonic and is defined by [38]

Ym
l (θ, ϕ) = im+|m|

[
(2l + 1)(l − |m|)!)

4π(l + |m|)!)
]1/2

P
|m|
l (cos θ) eimϕ (4)

where Pm
l (x) is the associated Legendre polynomial of lth degree and mth order.

The reduced Bessel function k̂n+1/2(z) is defined by [11, 12]

k̂n+1/2(z) =
√

2

π
(z)n+1/2Kn+1/2(z) (5)

= zne−z
n∑

j=0

(n + j)!

j ! (n − j)!

1

(2 z)j
(6)

where Kn+1/2 denotes the modified Bessel function of the second kind [39].
Reduced Bessel functions satisfy the recurrence relation [11]

k̂n+1/2(z) = (2n − 1) k̂n−1/2(z) + z2k̂(n−1)−1/2(z). (7)
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A useful property satisfied by k̂n+1/2(z) is given by [39](
d

z dz

)m
[
k̂n+1/2(z)

z2n+1

]
=
(

d

z dz

)m [√
π

2

Kn+1/2(z)

zn+1/2

]

= (−1)m
k̂n+m+1/2(z)

z2(n+m)+1
. (8)

Slater-type orbitals are defined in normalized form according to the following relationship
[3, 4]:

χm
n,l(ζ, �r) = N(n, ζ ) rn−1 e−ζ r Ym

l (θ �r , ϕ �r ) (9)

where n = 1, 2, . . . , l = 0, 1, . . . , n − 1 and m = −l,−l + 1, . . . , l − 1, l and where
N(n, ζ ) = ζ−n+1 [(2ζ )2n+1/(2n)!]1/2 denotes the normalization factor.

Slater-type orbitals can be expressed as finite linear combination of B functions [13]:

χm
n,l(ζ, �r) =

n−l∑
p=p̃

(−1)n−l−p(n − l)!2l+p(l + p)!

(2p − n − l)!(2n − 2l − 2p)!!
Bm

p,l(ζ, �r) (10)

where

p̃ =
{
(n − l)/2 if n − l is even

(n − l + 1)/2 if n − l is odd
(11)

and where the double factorial is defined by

(2k)!! = 2 × 4 × 6 × · · · × (2k) = 2kk!

(2k + 1)!! = 1 × 3 × 5 × · · · × (2k + 1) = (2k + 1)!

2kk!
0!! = 1.

(12)

The Fourier transform B
m

n,l(ζ, �p) of Bm
n,l(ζ, �r) is given by [15, 18]

B
m

n,l(ζ, �p) = 1

(2π)3/2

∫
�r

e−i �p·�rBm
n,l(ζ, �r) d�r (13)

=
√

2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Ym
l (θ �p, ϕ �p). (14)

The Rayleigh expansion of the plane wavefunctions is given by [40]

e±i �p·�r =
+∞∑
l=0

l∑
m=−l

4π (±i)l jl(| �p||�r|) Ym
l (θ �r , ϕ �r ) [Ym

l (θ �p, ϕ �p)]∗. (15)

The spherical Bessel function jl(x) of order l ∈ N0 is given by [39]

jl(x) = [π/(2x)]1/2 Jl+1/2(x) (16)

where Jl+1/2(x) denotes the Bessel function of the first kind [39].
The spherical Bessel function is also defined by [39, 41]

jl(x) = (−1)l xl

(
d

x dx

)l ( sin(x)

x

)
. (17)
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jl(x) and its first derivative j ′
l (x) satisfy the recurrence relations [39]

xjl−1(x) + xjl+1(x) = (2l + 1)jl(x)

ljl−1(x) − (l + 1)jl+1(x) = (2l + 1)j ′
l (x).

(18)

For the following, we set jn
l+1/2 for n = 1, 2, . . . the successive positive zeros of jl(x).

j 0
l+1/2 is assumed to be 0.

Gaunt coefficients are defined as [42–48]

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0
[Ym1

l1
(θ, ϕ)]∗Ym2

l2
(θ, ϕ)Y

m3
l3

(θ, ϕ) sin θ dθ dϕ. (19)

These coefficients linearize the product of two spherical harmonics:

[Ym1
l1

(θ, ϕ)]∗Ym2
l2

(θ, ϕ) =
l1+l2∑

l=lmin,2

〈l2m2|l1m1|lm2 − m1〉Ym2−m1
l (θ, ϕ) (20)

where the subscript l = lmin,2 in the summation symbol implies that the summation index l

runs in steps of 2 from lmin to l1 + l2 and the constant lmin is given by [45]

lmin =
{

max(|l1 − l2|, |m2 − m1|) if l1 + l2 + max(|l1 − l2|, |m2 − m1|) is even

max(|l1 − l2|, |m2 − m1|) + 1 if l1 + l2 + max(|l1 − l2|, |m2 − m1|) is odd.

(21)

The Fourier integral representation of the Coulomb operator 1/|�r − �R1| is given by [49]

1

|�r − �R1|
= 1

2π2

∫
�k

e−i�k·(�r− �R1)

k2
d�k. (22)

The hypergeometric function is given by [39]

2F1(α, β; γ ; x) =
+∞∑
r=0

(α)r(β)rx
r

(γ )rr!
(23)

where (α)n represents the Pochhammer symbol, which is defined by [39]

(α)0 = 1

(α)n = α(α + 1)(α + 2) · · · (α + n − 1) for n �= 0
(24)

where . denotes the Gamma function [39]. For n ∈ N0:

.(n + 1) = n! and .
(
n + 1

2

) = (2n)!

22n n!

√
π. (25)

The infinite series (23) converge only for |x| < 1, and they converge quite slowly if |x| is
slightly less than one. The corresponding functions nevertheless are defined in a much larger
subset of the complex plane, including the case |x| > 1. Convergence problems of this kind
can often be overcome by using nonlinear sequence transformations [50].

Let α be a negative integer. For n ∈ N0:

(α)n =




(α)n = 1 n = 0

(α)n = α(α + 1)(α + 2) · · · (α + n − 1) n � −α

(α)n = 0 n � −α + 1.

(26)
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Now if α or β in the infinite series (23) is a negative integer, then by using the above
relations we can show that the infinite series (23) will be reduced to a finite sum.

For the following, we define A(γ ) for a certain γ , as the set of infinitely differentiable
functions p(x), which have asymptotic expansions in inverse powers of x as x → +∞, of the
form

p(x) ∼ xγ
(
a0 +

a1

x
+

a2

x2
+ · · ·

)
(27)

and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in (27) term by term.

From (27) it follows that A(γ ) ⊃ A(γ−1) ⊃ · · · .
We denote by Ã(γ ) for γ ∈ R, the set of functions p(x) such that p(x) ∈ A(γ ) and

limx→+∞ x−γ p(x) �= 0. From this definition, it follows that if p ∈ Ã(γ ) then p(x) has an
asymptotic expansion in inverse powers of x as x → +∞ of the form given by (27) with
a0 �= 0.

We defined the functional α0(p) by α0(p) = ao = limx→+∞ x−γ p(x).
We defined eÃ(k)

for some k as the set of g(x) = eφ(x), where φ(x) ∈ Ã(k).

Lemma 1. Let p(x) be in Ã(γ ) for a certain γ . Then

(a) If γ �= 0 then p′(x) ∈ Ã(γ−1), otherwise p′(x) ∈ A(−2).
(b) If q(x) ∈ Ã(δ) then p(x) q(x) ∈ Ã(γ+δ) and α0(p q) = α0(p) α0(q).
(c) ∀k ∈ R, xkp(x) ∈ Ã(k+γ ) and α0(x

kp) = α0(p).
(d) The function c p(x) ∈ Ã(γ ) and α0(c p) = c α0(p) for all c �= 0.
(e) If q(x) ∈ A(δ) and γ −δ > 0 then the function p(x)+q(x) ∈ Ã(γ ) and α0(p+q) = α0(p).

If γ = δ and α0(p) �= −α0(q) then the function p(x) + q(x) ∈ Ã(γ ) and α0(p + q) =
α0(p) + α0(q).

(f) For m > 0 an integer, pm(x) ∈ Ã(mγ ) and α0(p
m) = α0(p)

m.
(g) The function 1/p(x) ∈ Ã(−γ ) and α0(1/p) = 1/α0(p).

Proofs of the above properties can easily be obtained by using the properties of Poincaré
series [51].

Lemma 2. Let φ(x) be in Ã(γ ) for a certain γ .
The function k̂n+1/2(φ(x)) is in Ã(n γ )eÃ(γ )

and can be written in the following form:

k̂n+1/2(φ(x)) = φ1(x) e−φ(x)

where

φ1 ∈ Ã(n γ ) and α0(φ1) = (α0(φ))
n �= 0.

By using the analytic expression of the reduced Bessel function which is given by
equation (6) and using the properties of Poincaré series, one can easily prove lemma 2.

3. Three-centre two-electron Coulomb and hybrid integrals over B functions

By substituting the integral representation of the Coulomb operator (22) in the expression of
the three-centre two-electron Coulomb integral (1), we obtain

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
�x

ei�x· �R4
〈
B

m1
n1,l1

(ζ1, �r)∣∣e−i�x·�r ∣∣Bm2
n2,l2

(ζ2, �r)〉�r
×〈Bm4

n4,l4
(ζ4, �r ′′)

∣∣e−i�x·�r ′′ ∣∣Bm3
n3,l3

(
ζ3, �r ′′ − ( �R3 − �R4)

)〉∗
�r ′′

d�x
x2

(28)
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where

�r = �R − −→
OA �r ′′ = − �R′ +

−→
OA �R3 = −→

AB �R4 = −→
AC.

For the hybrid integral we obtain

Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
�x

e−i�x· �R1
〈
B

m1
n1,l1

(ζ1, �r)∣∣e−i�x·�r ∣∣Bm2
n2,l2

(ζ2, �r)〉�r
×〈Bm4

n4,l4
(ζ4, �r ′′)

∣∣e−i�x·�r ′′ ∣∣Bm3
n3,l3

(
ζ3, �r ′′ − �R1

)〉∗
�r ′′

d�x
x2

(29)

where

�r = �R − −→
OA �r ′′ = �R′ − −→

OB �R1 = −−→
AB.

The following arguments can also be applied to the hybrid integral.
In [22, 29], we showed that the term

〈
B

m1
n1,l1

(ζ1, �r) ∣∣e−i�x·�r ∣∣Bm2
n2,l2

(ζ2, �r)〉�r in the above
equations, has an analytic expression involving a hypergeometric function which is given
by

2F1

(
l − k − l1 − l2 + 1

2
,
l − k − l1 − l2

2
+ 1; l +

3

2
; −x2

ζ 2
s

)
(30)

where k and l are positive integers.
One of the first two arguments (l − k − l1 − l2 + 1)/2, (l − k − l1 − l2)/2 + 1 of the

hypergeometric function is a negative integer. Thus, the above infinite series is reduced to a
finite expansion. The analytic expression of the term in �r , involving in equations (28) and (29),
is given by [22, 29]

〈
B

m1
n1,l1

(ζ1, �r) ∣∣e−i�x·�r ∣∣Bm2
n2,l2

(ζ2, �r) 〉�r = (4π)
√
πζ

l1
1 ζ

l2
2

2n1+l1+n2+l2(n1 + l1)!(n2 + l2)!

×
lmax∑

l=lmin,2

(−i)l〈l2m2|l1m1|lm2 − m1〉Ym1−m2
l (θ �x, ϕ �x)

×
n1+n2∑
k=2

k2∑
i=k1

[
(2n1 − i − 1)! (2n2 − i − 1)! ζ i−1

1 ζ k−i−1
2

(i − 1)! (n1 − i)! (k − i − 1)! (n2 − k + i)! 2n1+n2−k

]

×.(k + l1 + l2 + l + 1)ζ nk−l−1
s

2l+1.
(
l + 3

2

) [
ζ 2
s + x2

]k+l1+l2

η′∑
r=0

(−1)r
(η/2)r ((η + 1)/2)r(

l + 3
2

)
r
r!ζ 2r

s

x2r+l (31)

where

k1 = max(1, k − n2), k2 = min(n1, k − 1), ζs = ζ1 + ζ2


η′ = −η

2
if η is even

η′ = −η + 1

2
otherwise.

The Fourier transform method allowed analytic expression to be developed for the second term
in the integrand [20, 21]:〈

B
m4
n4,l4

(ζ4, �r ′′)
∣∣e−i�x·�r ′′ ∣∣Bm3

n3,l3

(
ζ3, �r ′′ − ( �R3 − �R4)

)〉∗
�r ′′ .
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The above results led to an analytic expression for the three-centre two-electron Coulomb
integral over B functions, which is given by

nx = l3 − l′3 + l4 − l′4 + 2r + l nk = k + l1 + l2

nγ = 2(n3 + l3 + n4 + l4) − (l′3 + l′4) − l′ + 1

µ = (m2 − m1) − (m3 − m′
3) + (m4 − m′

4)

[γ(s, x)]2 = (1 − s)ζ 2
4 + sζ 2

3 + s(1 − s)x2

η = l − k − l1 − l2 + 1 8l = l3 + l4 − l′

2

�v = (1 − s)( �R3 − �R4) − �R4

ν = n3 + n4 + l3 + l4 − l′ − j + 1
2

m34 = (m3 − m′
3) − (m4 − m′

4)

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)3 √
π ζ

l1
1 ζ

l2
2 ζ

2n3+l3−1
3 ζ

2n4+l4−1
4

× (2l3 + 1)!! (2l4 + 1)!! (n3 + l3 + n4 + l4 + 1)!

2l1+l2+1 (n1 + l1)! (n2 + l2)! (n3 + l3)! (n4 + l4)!

×
l1+l2∑

l=lmin,2

(−i)l

22n1+2n2+l
〈l1m1|l2m2|lm1 − m2〉

×
n1+n2∑
k=2

k2∑
i=k1

[
2k (2n1 − i − 1)! (2n2 − i − 1)! ζ i−1

1 ζ k−i−1
2

(i − 1)! (n1 − i)! (k − i − 1)! (n2 − k + i)!

]

×
l4∑

l′4=0

l′4∑
m′

4=−l′4

il4(−1)l
′
4
〈l4m4|l4 − l′4m4 − m′

4|l′4m′
4〉

(2l′4 + 1)!![2(l4 − l′4) + 1]!!

×
l3∑

l′3=0

l′3∑
m′

2=−l′3

il3
〈l3m3|l3 − l′3m3 − m′

3|l′3m′
3〉

(2l′3 + 1)!![2(l3 − l′3) + 1]!!

×
l′3+l′4∑

l′=l′min,2

〈l′3m′
3|l′4m′

4|l′m′
3 − m′

4〉Rl′
34 Y

m′
3−m′

4
l′ (θ �R34

, ϕ �R34
)

×
l3−l′3+l4−l′4∑
l34=l′′min,2

〈l3 − l′3m3 − m′
3|l4 − l′4m4 − m′

4|l34m34〉

×
l+l34∑

λ=λmin,2

iλ〈lm2 − m1|l34(m3 − m′
3) − (m4 − m′

4)|λµ〉

×
8l∑
j=0

(
8l

j

)
(−1)(l

′
4+l′3+l′)/2 (−1)j

2n3+n4+l3+l4−j+1(n3 + n4 + l3 + l4 − j + 1)!

×ζ nk−l−1
s .(k + l1 + l2 + l + 1)

.(l + 3/2)

η′∑
r=0

(−1)r
(η/2)r ((η + 1)/2)r
(l + 3/2)r r! ζ 2r

s
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×
∫ 1

s=0
sn3+l3+l4−l′4 (1 − s)n4+l4+l3−l′3 Y

µ
λ (θ�v, ϕ�v)

×
∫ +∞

x=0

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx ds. (32)

The numerical evaluation of the above analytic expression turned out to be very difficult. This
is due to the presence of semi-infinite integrals, which will be referred to as K̃(s), whose
integrands oscillate rapidly, due to the spherical Bessel functions jλ(vx), in particular for large
values of λ and v since the zeros of the function become closer.

The semi-infinite integral K̃(s) involved in equation (32) is given by

K̃(s) =
∫ +∞

x=0

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx. (33)

The above semi-infinite oscillatory integral can be transformed into an infinite series of
integrals of alternating sign. This infinite series is given by

K̃(s) =
+∞∑
n=0

∫ jn+1
λ,v

jn
λ,v

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx (34)

where jn
λ,v = jn

λ+1/2/v, n = 1, 2, . . . which are the successive positive zeros of jλ(vx). j 0
λ,v is

assumed to be 0.
The above infinite series is convergent and alternating, therefore the sum of N first terms,

forN sufficiently large, gives a good approximation of the semi-infinite integral. Unfortunately,
the use of this approach is very time consuming.

In previous work [22], we showed that the integrand of K̃(s), which will be referred to
as FK̃(x), satisfies a fourth-order linear differential equation of the form required to apply the
nonlinear D̄-transformation. The results obtained were satisfactory compared with the others
obtained using the quadrature of Gauss–Laguerre, the ε-algorithm of Wynn [27] and Levin’s
u transform [28].

The approximation D̄(4)
n of K̃(s) is given by [22]

D̄(4)
n =

∫ xl

0
FK̃(t) dt +

3∑
k=1

F (k)

K̃ (xl)x
k+1
l

n−1∑
i=0

β̄k,i

xi
l

l = 0, 1, . . . , 3n (35)

where xl = j l+1
λ,v for l = 0, 1, . . . , 3n. D(4)

n and the β̄k,i for k = 1, 2, 3 and i = 0, 1, . . . , n− 1
are the (3n + 1) unknowns of the linear system.

As can be seen from the above equation, the computation of the three successive derivatives
of FK̃(x) is required for the calculations.

The calculation of 3n successive zeros of the spherical Bessel function is also necessary.
This presents severe numerical and computation difficulties. Added to this is the fact that the
order of the linear system increases as n becomes large.

In [23, 29, 30], we showed by using some practical properties of spherical Bessel, reduced
Bessel functions and Poincaré series that we can obtain a second-order linear differential
equation satisfied by f (x) = g(x)jλ(x), where g(x) = h(x) eφ(x) and where h(x) ∈ Ã(γ ) and
φ(x) ∈ Ã(k) for some γ and k. We also showed that if k > 0 and α0(φ) < 0 then f (x) satisfies
all the conditions required to apply the nonlinear D̄-transformation using the second-order
differential equation. This result led to the HD̄ approach.

The integrand FK̃(x) can be written as

FK̃(x) = g(x)jλ(x)
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where

g(x) = [
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ
.

It is shown that g(x) is of the form h(x) eφ(x), where h(x) and φ(x) satisfy all of the above
conditions. The approximation of K̃(s) using the HD̄ method is given by [23, 29, 30]

HD̄(2)
n =

∫ xl

0
FK̃(t) dt + g(xl)j

′
λ(vx)x

2
l

n−1∑
i=0

β̄1,i

xi
l

l = 0, 1, . . . , n (36)

where xl = j l+1
λ,v , l = 0, 1, . . . , n. HD̄(2)

n and β̄1,i for i = 0, 1, . . . , n − 1 are the (n + 1)
unknowns of the linear system.

It is clear from equation (36) that the reduction of the order of the linear differential equation
has greatly simplified the application of the nonlinear D̄-transformation. The calculation of
the successive derivatives of the integrand is avoided, the order of the linear system to solve
is reduced to (n + 1). However, we still have to calculate n successive zeros of the spherical
Bessel function. In [23, 29, 30], we showed that the HD̄ approach led to a high accuracy
and a substantial gain in the calculation times. The convergence properties of this approach
were analysed [23, 30] and they showed that from a numerical point of view the HD̄ method
corresponds to the most ideal situation.

The aim of this paper is to further simplify the calculations as well as to reduce the
calculation times while maintaining the same high accuracy.

4. The SD̄ method for improving convergence of semi-infinite oscillatory integrals

Theorem. Let f (x) be a function of the form f (x) = g(x)jλ(x), where g(x) ∈ C2
(
[0,+∞[

)
,

which is the set of twice continuously differentiable functions, and of the form g(x) =
h(x) eφ(x), where h(x) ∈ Ã(γ ) for a certain γ and φ(x) ∈ Ã(k) for a certain k.

If k > 0, α0(φ) < 0 and for all l = 0, 1, . . . , λ − 1:

lim
x→0

xl−λ+1

(
d

x dx

)l (
xλ−1g(x)

)
jλ−1−l(x) = 0

then f (x) is integrable on [0,+∞[ and an approximation of
∫ +∞

0 f (x) dx is given by

SD̄(2,j)
n =

∑n+1
i=0

(
n+1
i

)
(x0/α + i + j)n F (xi+j )

/[
x2
i+jG(xi+j )

]
∑n+1

i=0

(
n+1
i

)
(x0/α + i + j)n

/[
x2
i+jG(xi+j )

] (37)

where α = π , xl = (l + 1)α for l = 0, 1, . . . , G(x) = (
d

x dx

)λ (
xλ−1g(x)

)
and where

F(x) = ∫ x

0 G(t) sin(t) dt .

Proof. Let us consider
∫ +∞

0 f (x) dx = ∫ +∞
0 g(x) jλ(x).

By replacing the spherical Bessel function jλ(x) by its analytic expression given by (17),
one can obtain ∫ +∞

0
f (x) dx = (−1)λ

∫ +∞

0
xλ g(x)

(
d

x dx

)λ

j0(x) dx. (38)
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By integrating by parts until all the derivatives of j0(x), with respect to x dx, disappear in
the last term on the right-hand side of (38), we obtain∫ +∞

0
f (x) dx =

[
λ−1∑
l=0

(−1)λ+l

((
d

x dx

)l (
xλ−1g(x)

))(( d

x dx

)λ−1−l

j0(x)

)]+∞

0

+
∫ +∞

0

((
d

x dx

)λ (
xλ−1 g(x)

))
j0(x) x dx. (39)

Using equation (17) and replacing j0(x) by sin(x)/x, the above equation can be rewritten
as follows:∫ +∞

0
f (x) dx = −

[
λ−1∑
l=0

xl−λ+1

((
d

x dx

)l (
xλ−1g(x)

))
jλ−1−l(x)

]+∞

0

+
∫ +∞

0

((
d

x dx

)λ (
xλ−1 g(x)

))
sin(x) dx (40)

where g(x) is exponentially decreasing as x → +∞. From this it follows that(
d

x dx

)l (
xλ−1g(x)

)
is also exponentially decreasing as x → +∞ and consequently for all

l � 0:

lim
x→+∞ xl−λ+1

((
d

x dx

)l (
xλ−1g(x)

))
jλ−1−l(x) = 0

As limx→0 x
l−λ+1

((
d

x dx

)l (
xλ−1g(x)

))
jλ−1−l(x) = 0, for l = 0, . . . , λ−1 then the above

equation can be rewritten as∫ +∞

0
f (x) dx =

∫ +∞

0

[(
d

x dx

)λ (
xλ−1 g(x)

)]
sin(x) dx. (41)

Let us consider the function G(x) = (
d

x dx

)λ (
xλ−1 g(x)

)
. By using the Leibnitz formulae

and the fact that g(x) = h(x) eφ(x), we can obtain

G(x) =
λ∑

i=0

λ!!

(λ − 2i)!!
xλ−2i

(
d

x dx

)λ−i

g(x) =
λ∑

i=0

λ−i∑
m=0

λ!!

(λ − 2i)!!

(
λ − i

m

)
xλ−2i

×
((

d

x dx

)m

h(x)

)((
d

x dx

)λ−i−m

eφ(x)

)
. (42)

Using the properties of asymptotic expansions given by lemma 1, we can show that(
d

x dx

)m

h(x) ∈ A(γ−2m)

(
d

x dx

)α

eφ(x) = ϕ(x) eφ(x) where ϕ ∈ A(α(k−2))

and consequently

xλ−2i

((
d

x dx

)m

h(x)

)((
d

x dx

)λ−i−m

eφ(x)

)
= Hi,m(x) eφ(x)

where the function Hi,m(x) ∈ A(γ+(λ−i−m)k−λ).
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By using lemma 1, we can show that G(x) can be rewritten as

G(x) = H(x) eφ(x) where H(x) ∈ Ã(γ+λk−λ) (43)

sin(x) satisfies a second-order linear differential equation given by

sin(x) = − sin′′(x). (44)

Let the function F(x) be defined by

F(x) = G(x) sin(x)

then

sin(x) = F(x)/G(x).

By substituting this in the linear differential equation satisfied by sin(x) we can obtain,
after replacing G(x) by H(x) eφ(x), a second-order linear differential equation satisfied by
F(x), which is given by

F(x) = q1(x)F ′(x) + q2(x)F ′′(x) (45)

where the coefficients q1(x) and q2(x) are defined by

q1(x) = 2
(
φ′(x) + H ′(x)/H(x)

)
1 + (φ′(x) + H ′(x)/H(x))2 − (φ′(x) + H ′(x)/H(x))′

q2(x) = −1

1 + (φ′(x) + H ′(x)/H(x))2 − (φ′(x) + H ′(x)/H(x))′
.

(46)

Using lemma 1, we can show that if k = 0 then q1(x) ∈ A(−1) and q2(x) ∈ A(0), otherwise
q1(x) ∈ A(−k+1) and q2(x) ∈ A(−k+1).

Since k > 0 and α0(φ) < 0, then the function F(x) is exponentially decreasing as
x → +∞ and consequently is integrable on [0,+∞[ and for all l = i, 2; i = 1, 2:

lim
x→+∞ q

(i−1)
l (x)F (l−i)(x) = 0.

It is easy to show that qi,0 = limx→+∞ x−iqi(x) = 0 for i = 1, 2. From this it follows
that for every integer l � −1:

2∑
i=1

l(l − 1) . . . (l − i + 1)qi,0 = 0 �= 1.

All the conditions required to apply the D̄-transformation are now shown to be satisfied
by F(x).

The approximation of
∫ +∞

0 F(x) dx = ∫ +∞
0 f (x) dx is given by

SD̄(2)
n =

∫ xl

0
F(x) dx + (−1)l+1 G(xl) x

2
l

n−1∑
i=0

β̄1,i

xi
l

l = 0, 1, . . . , n (47)

where xl = (l + 1)π for l = 0, 1, . . . which are the successive zeros of sin(x).
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Following Levin in [28], we can use Cramer’s rule, since the zeros of sin(x) are equidistant,
to obtain the simple solution which is given by equation (37) for the unknown SD̄(2)

n . �

5. Evaluation of three-centre two-electron Coulomb and hybrid integrals

The integrand of K̃(s) is given by FK̃(x) = g(x)jλ(vx), where g(x) is defined by

g(x) = [
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ
.

It is clear that the function g(x) belongs to C2
(
[0,+∞[

)
.

Let the function φ(x) be defined by

φ(x) = R34γ(s, x)

= R34

√
(1 − s)ζ 2

4 + sζ 2
3 + s(1 − s)x2.

From lemma 1, it follows that φ(x) ∈ Ã(1) and 1/ [γ(s, x)]nγ ∈ Ã(−nγ ).
The function

[
ζ 2
s + x2

]−nk = x−2nk
[
1 + ζ 2

s /x
2
]−nk ∈ Ã(−2nk).

Using lemmas 1 and 2, we can obtain an expression for g(x), which is given by

g(x) = h(x) e−φ(x)

{
h(x) ∈ Ã(ν+nx−2nk−nγ )

φ ∈ Ã(1) with α0(φ) > 0.

With the help of equation (8) and the fact that d
dx = dz

dx
d
dz , one can easily show that if

nγ = 2ν then for j ∈ N:

(
d

x dx

)j
[
k̂ν[R34γ(s, x)]

[γ(s, x)]2ν

]
= (−1)j sj (1 − s)j

k̂ν+j [R34γ(s, x)]

[γ(s, x)]2(ν+j)
(48)

and for nγ < 2ν, we obtain(
d

x dx

)j
[
k̂ν[R34γ(s, x)]

[γ(s, x)]nγ

]
=

j∑
i=0

(
j

i

)
(−1)j−i (2ν − nγ )!!

(2ν − nγ − 2i)!!

×si(1 − s)i
k̂ν+j−i [R34γ(s, x)]

[γ(s, x)]nγ +2i . (49)

For l ∈ N, we obtain after some algebraic operations(
d

x dx

)l (
xλ−1g(x)

) =
l∑

i=0

i∑
j=0

(
l

i

)(
i

j

)
(nx + λ − 1)!!

(nx + λ − 1 − 2i)!!
xnx+λ−1−2i

×M(nk, i − j)
[
ζ 2
s + x2

]−nk−i+j
(

d

x dx

)l−i
[
k̂ν[R34γ(s, x)]

[γ(s, x)]nγ

]
(50)

where

M(nk, i − j) = (−2)i−j nk(nk + 1) . . . (nk + i − j − 1).

As can be seen from equation (32), λ � l + l3 − l′3 + l4 − l′4 � nx . From this it follows
that if l � λ − 1 then l � nx − 1. Using this, we can show that nx + l − 2i > 0 for all i � l.
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Now by using this argument and with the help of equations (48)–(50), we can show that

lim
x→0

xl−λ+1

(
d

x dx

)l (
xλ−1g(x)

)
jλ−1−l(vx) = 0.

Now it is shown that the integrand FK̃(x) of K̃(s) satisfies all the conditions of the theorem.
Consequently, K̃(s) can be rewritten as

K̃(s) = 1

vλ+1

∫ +∞

x=0

((
d

x dx

)λ [
xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ

])
sin(vx) dx (51)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π/v

nπ/v

((
d

x dx

)λ [
xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ(s, x)]

[γ(s, x)]nγ

])
sin(vx) dx. (52)

The approximation of K̃(s) is given by

SD̄(2,j)
n = 1

vλ+1

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/[
x2
i+jG(xi+j )

]
∑n+1

i=0

(
n+1
i

)
(1 + i + j)n

/[
x2
i+jG(xi+j )

] (53)

where xl = (l + 1) π
v

for l = 0, 1, . . . ,G(x) = (
d

x dx

)λ (
xλ−1g(x)

)
and where F(x) =∫ x

0 G(t) sin(vt) dt .
As can be seen from equations (48)–(50), the calculation of G(x) does not present any

computation difficulties.
In the case of the hybrid integral Hn2l2m2,n4l4m4

n1l1m1,n3l3m3
, the semi-infinite integral is given by

H̃(s) =
∫ +∞

x=0

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R1γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx (54)

=
+∞∑
n=0

∫ jn+1
λ,v

jn
λ,v

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R1γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx (55)

where �v = (2 − s) �R1. ζs , nk , nx , ν, nγ , γ(s, x) and λ are defined according to equation (32).
As can be seen from the above equation, the integrand of H̃(s) is similar to FK̃(x). From

this it follows that

H̃(s) = 1

vλ+1

∫ +∞

x=0

((
d

x dx

)λ [
xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R1γ(s, x)]

[γ(s, x)]nγ

])
sin(vx) dx (56)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π/v

nπ/v

((
d

x dx

)λ [
xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R1γ(s, x)]

[γ(s, x)]nγ

])
sin(vx) dx. (57)

An approximation of H̃(s) can be obtained using the SD̄ approach (53).
The use of equation (53) for calculating the approximations of K̃(s) and H̃(s) is more

advantageous than the use of the linear systems given by (35) or (36) where the computation
of the successive zeros of spherical Bessel function is necessary and where it is required to
compute a method for solving linear systems, which in the case of the integrals of interest, is
much more time consuming than using Cramer’s rule.
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6. Conclusion

Three-centre two-electron Coulomb and hybrid integrals appear in molecular calculations. An
atomic orbitals basis of Slater-type functions can be expressed as B functions in order to apply
the Fourier transform method that allowed analytic expressions to be developed for molecular
integrals of interest. The numerical evaluation of these analytic expressions presents severe
computation difficulties due to the presence of semi-infinite very oscillatory integrals, whose
integrands involve a product of hypergeometric series, spherical Bessel and reduced Bessel
functions. We have proven that these hypergeometric series are reduced to finite sums and the
integrands satisfy all the conditions required to apply the HD̄ method which greatly simplified
the application of the nonlinear D̄-transformation.

This work presents an extremely efficient evaluation of the integrals of question using the
new approach which we called SD̄. This approach relies on some practical properties of Bessel
and sine functions, which allowed the use of Cramer’s rule to calculate the approximations
SD̄

(2,j)
n of semi-infinite integrals. This led to a substantial simplification in the calculations

since the computation of the successive zeros of the spherical Bessel function and a method to
solve linear systems is avoided. For a given high accuracy, the SD̄ method is faster than the
HD̄.

The progress obtained by the new approach is another useful step in developing software
for evaluating molecular integrals over Slater-type orbitals.

Appendix. Numerical results and discussion

The finite integrals involved in equation (53) are evaluated using Gauss–Legendre quadrature
of order 16. The finite integrals involved in equations (52) and (57) are transformed into finite
sums: ∫ xn

0
f (x) dx =

n−1∑
l=0

∫ xl+1

xl

f (x) dx.

The terms of the above finite sum are evaluated using Gauss–Legendre quadrature of order
16.

The values with 15 correct decimal places are obtained for the integrals by using the
infinite series (52), (34), (57) and (55) which we sum until N = max (see tables A1, A2, A5,
A6, A9, A10, A13 and A14). Note that by using the infinite series involving the sine function
(52) and (57) instead of the infinite series involving the spherical Bessel function (34) and (55),
we need fewer terms in evaluating the integrals with 15 exact decimal places.

Table A1. Exact values of the semi-infinite integral K̃(s) obtained to 15 correct decimal places using
the infinite series given by equation (52). (s = 0.001, nx = λ, ν = n3 +n4 + 1

2 , nγ = 2(n3 +n4)+1
and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 7.5 1.5 1.5 1.0 1.0 1.0 125 0.126 414 190 755 008D−02
2 1 2 1 3.5 7.0 1.0 1.0 1.5 1.0 361 0.492 082 994 200 939D−02
2 2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 106 0.146 157 629 412 064D+00
3 2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 135 0.861 150 036 617 796D+00
3 3 4 4 8.5 2.0 1.5 1.0 1.5 1.0 77 0.100 445 620 385 459D+00
4 3 3 4 3.5 3.0 1.0 1.0 1.0 1.5 81 0.204 664 014 657 073D+01
4 4 4 5 5.5 4.5 1.0 1.0 2.0 1.5 71 0.169 055 658 807 174D+01
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Table A2. Exact values of the semi-infinite integral K̃(s) obtained to 15 correct decimal places using
the infinite series given by equation (34). (s = 0.001, nx = λ, ν = n3 +n4 + 1

2 , nγ = 2(n3 +n4)+1
and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 7.5 1.5 1.5 1.0 1.0 1.0 124 0.126 414 190 755 008D−02
2 1 2 1 3.5 7.0 1.0 1.0 1.5 1.0 442 0.492 082 994 200 938D−02
2 2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 166 0.146 157 629 412 064D+00
3 2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 300 0.861 150 036 617 796D+00
3 3 4 4 8.5 2.0 1.5 1.0 1.5 1.0 116 0.100 445 620 385 459D+00
4 3 3 4 3.5 3.0 1.0 1.0 1.0 1.5 157 0.204 664 014 657 074D+01
4 4 4 5 5.5 4.5 1.0 1.0 2.0 1.5 158 0.169 055 658 807 174D+01

Table A3. Evaluation of the semi-infinite integral K̃(s) using the SD̄ method (53) of order 5
(SD̄(2,5)

5 ). (s = 0.001, nx = λ, ν = n3 + n4 + 1
2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 SD̄
(2,5)
5 Error

1 1 2 0 7.5 1.5 1.5 1.0 1.0 1.0 0.126 414 1908D−02 0.26D−13
2 1 2 1 3.5 7.0 1.0 1.0 1.5 1.0 0.492 082 9973D−02 0.31D−10
2 2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 0.146 157 6294D+00 0.46D−12
3 2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 0.861 150 0366D+00 0.33D−12
3 3 4 4 8.5 2.0 1.5 1.0 1.5 1.0 0.100 445 6204D+00 0.39D−10
4 3 3 4 3.5 3.0 1.0 1.0 1.0 1.5 0.204 664 0147D+01 0.89D−13
4 4 4 5 5.5 4.5 1.0 1.0 2.0 1.5 0.169 055 6588D+01 0.16D−11

Table A4. Evaluation of the semi-infinite integral K̃(s) using the HD̄ method (36) of order 7
(HD̄

(2)
7 ). (s = 0.001, nx = λ, ν = n3 + n4 + 1

2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 HD̄
(2)
7 Error

1 1 2 0 7.5 1.5 1.5 1.0 1.0 1.0 0.126 414 1908D−02 0.17D−12
2 1 2 1 3.5 7.0 1.0 1.0 1.5 1.0 0.492 082 9639D−02 0.30D−09
2 2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 0.146 157 6294D+00 0.19D−10
3 2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 0.861 150 0366D+00 0.12D−10
3 3 4 4 8.5 2.0 1.5 1.0 1.5 1.0 0.100 445 6206D+00 0.17D−09
4 3 3 4 3.5 3.0 1.0 1.0 1.0 1.5 0.204 664 0147D+01 0.29D−10
4 4 4 5 5.5 4.5 1.0 1.0 2.0 1.5 0.169 055 6588D+01 0.71D−10

Table A5. Exact values of the semi-infinite integral K̃(s) obtained to 15 correct decimal places using
the infinite series given by equation (52). (s = 0.999, nx = λ, ν = n3 +n4 + 1

2 , nγ = 2(n3 +n4)+1
and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 2.5 2.0 1.5 1.5 1.0 1.0 155 0.276 599 387 190 865D−01
2 1 2 1 4.0 3.0 1.5 0.5 1.0 2.5 162 0.136 665 163 437 581D+00
2 2 3 2 5.5 4.0 1.0 1.0 1.0 1.5 113 0.924 821 866 479 653D−01
3 2 2 3 6.0 3.5 1.0 1.0 1.5 1.5 166 0.443 353 247 114 632D−01
3 3 3 4 3.0 2.5 1.0 1.0 2.0 1.5 103 0.826 191 642 949 067D−02
4 3 3 4 4.5 3.5 1.0 0.5 2.0 2.5 120 0.288 150 089 225 324D−01
4 4 4 5 6.0 5.5 1.5 1.5 1.5 1.0 125 0.163 254 589 286 851D−01
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Table A6. Exact values of the semi-infinite integral K̃(s) obtained to 15 correct decimal places using
the infinite series given by equation (34). (s = 0.999, nx = λ, ν = n3 +n4 + 1

2 , nγ = 2(n3 +n4)+1
and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 2.5 2.0 1.5 1.5 1.0 1.0 155 0.276 599 387 190 864D−01
2 1 2 1 4.0 3.0 1.5 0.5 1.0 2.5 206 0.136 665 163 437 580D+00
2 2 3 2 5.5 4.0 1.0 1.0 1.0 1.5 170 0.924 821 866 479 653D−01
3 2 2 3 6.0 3.5 1.0 1.0 1.5 1.5 255 0.443 353 247 114 634D−01
3 3 3 4 3.0 2.5 1.0 1.0 2.0 1.5 233 0.826 191 642 949 064D−02
4 3 3 4 4.5 3.5 1.0 0.5 2.0 2.5 256 0.288 150 089 225 324D−01
4 4 4 5 6.0 5.5 1.5 1.5 1.5 1.0 302 0.163 254 589 286 853D−01

Table A7. Evaluation of the semi-infinite integral K̃(s) using the SD̄ method (53) of order 5
(SD̄(2,5)

5 ). (s = 0.999, nx = λ, ν = n3 + n4 + 1
2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 SD̄
(2,5)
5 Error

1 1 2 0 2.5 2.0 1.5 1.5 1.0 1.0 0.276 599 3872D−01 0.29D−13
2 1 2 1 4.0 3.0 1.5 0.5 1.0 2.5 0.136 665 1634D+00 0.74D−12
2 2 3 2 5.5 4.0 1.0 1.0 1.0 1.5 0.924 821 8665D−01 0.20D−11
3 2 2 3 6.0 3.5 1.0 1.0 1.5 1.5 0.443 353 2471D−01 0.94D−12
3 3 3 4 3.0 2.5 1.0 1.0 2.0 1.5 0.826 191 6429D−02 0.47D−14
4 3 3 4 4.5 3.5 1.0 0.5 2.0 2.5 0.288 150 0892D−01 0.30D−13
4 4 4 5 6.0 5.5 1.5 1.5 1.5 1.0 0.163 254 5890D−01 0.32D−10

Table A8. Evaluation of the semi-infinite integral K̃(s) using the HD̄ method (36) of order 7
(HD̄

(2)
7 ). (s = 0.999, nx = λ, ν = n3 + n4 + 1

2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 HD̄
(2)
7 Error

1 1 2 0 2.5 2.0 1.5 1.5 1.0 1.0 0.276 599 3872D−01 0.11D−11
2 1 2 1 4.0 3.0 1.5 0.5 1.0 2.5 0.136 665 1635D+00 0.20D−10
2 2 3 2 5.5 4.0 1.0 1.0 1.0 1.5 0.924 821 8668D−01 0.28D−10
3 2 2 3 6.0 3.5 1.0 1.0 1.5 1.5 0.443 353 2473D−01 0.15D−10
3 3 3 4 3.0 2.5 1.0 1.0 2.0 1.5 0.826 191 6429D−02 0.59D−12
4 3 3 4 4.5 3.5 1.0 0.5 2.0 2.5 0.288 150 0892D−01 0.19D−11
4 4 4 5 6.0 5.5 1.5 1.5 1.5 1.0 0.163 254 5981D−01 0.88D−09

Table A9. Exact values of the semi-infinite integral H̃(s)obtained to 15 correct decimal places using
the infinite series given by equation (57). (s = 0.001, nx = λ, ν = n3 +n4 + 1

2 , nγ = 2(n3 +n4)+1
and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 5.0 1.0 1.0 1.0 1.0 281 0.284 585 738 157 463D−02
2 1 2 1 5.0 1.0 1.0 1.0 1.0 306 0.241 687 700 195 433D−02
2 2 2 2 5.0 2.0 1.0 1.0 1.0 328 0.142 508 881 938 776D−02
3 2 3 2 2.0 1.0 0.5 1.0 1.0 91 0.351 424 918 755 458D+01
3 3 3 3 5.0 1.0 0.5 1.0 1.5 231 0.131 384 356 685 596D−02
4 3 4 3 3.5 0.5 0.5 0.5 2.0 101 0.426 258 207 725 837D−02
4 4 4 4 2.0 1.5 1.5 1.0 1.5 90 0.344 688 004 983 810D−01
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Table A10. Exact values of the semi-infinite integral H̃(s) obtained to 15 correct decimal places
using the infinite series given by equation (55). (s = 0.001, nx = λ, ν = n3 + n4 + 1

2 ,
nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 5.0 1.0 1.0 1.0 1.0 278 0.284 585 738 157 462D−02
2 1 2 1 5.0 1.0 1.0 1.0 1.0 352 0.241 687 700 195 433D−02
2 2 2 2 5.0 2.0 1.0 1.0 1.0 438 0.142 508 881 938 776D−02
3 2 3 2 2.0 1.0 0.5 1.0 1.0 129 0.351 424 918 755 458D+01
3 3 3 3 5.0 1.0 0.5 1.0 1.5 368 0.131 384 356 685 597D−02
4 3 4 3 3.5 0.5 0.5 0.5 2.0 188 0.426 258 207 725 837D−02
4 4 4 4 2.0 1.5 1.5 1.0 1.5 156 0.344 688 004 983 809D−01

Table A11. Evaluation of the semi-infinite integral H̃(s) using the SD̄ method (53) of order 5
(SD̄(2,5)

5 ). (s = 0.001, nx = λ, ν = n3 + n4 + 1
2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 SD̄
(2,5)
5 Error

1 1 2 0 5.0 1.0 1.0 1.0 1.0 0.284 585 7381D−02 0.45D−12
2 1 2 1 5.0 1.0 1.0 1.0 1.0 0.241 687 7012D−02 0.98D−11
2 2 2 2 5.0 2.0 1.0 1.0 1.0 0.142 508 8829D−02 0.94D−11
3 2 3 2 2.0 1.0 0.5 1.0 1.0 0.351 424 9188D+01 0.93D−13
3 3 3 3 5.0 1.0 0.5 1.0 1.5 0.131 384 3563D−02 0.41D−11
4 3 4 3 3.5 0.5 0.5 0.5 2.0 0.426 258 2077D−02 0.84D−13
4 4 4 4 2.0 1.5 1.5 1.0 1.5 0.344 688 0050D−01 0.15D−11

Table A12. Evaluation of the semi-infinite integral H̃(s) using the HD̄ method (36) of order 7
(HD̄

(2)
7 ). (s = 0.001, nx = λ, ν = n3 + n4 + 1

2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 HD̄
(2)
7 Error

1 1 2 0 5.0 1.0 1.0 1.0 1.0 0.284 585 7365D−02 0.16D−10
2 1 2 1 5.0 1.0 1.0 1.0 1.0 0.241 687 6874D−02 0.13D−09
2 2 2 2 5.0 2.0 1.0 1.0 1.0 0.142 508 8662D−02 0.16D−09
3 2 3 2 2.0 1.0 0.5 1.0 1.0 0.351 424 9188D+01 0.12D−09
3 3 3 3 5.0 1.0 0.5 1.0 1.5 0.131 384 3597D−02 0.30D−10
4 3 4 3 3.5 0.5 0.5 0.5 2.0 0.426 258 2077D−02 0.14D−12
4 4 4 4 2.0 1.5 1.5 1.0 1.5 0.344 688 0062D−01 0.13D−09

Table A13. Exact values of the semi-infinite integral H̃(s) obtained to 15 correct decimal places
using the infinite series given by equation (57). (s = 0.999, nx = λ, ν = n3 + n4 + 1

2 ,
nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 3.0 1.0 1.0 1.0 1.0 111 0.338 401 188 224 347D−01
2 1 2 1 4.0 1.5 1.5 0.5 1.0 117 0.159 408 922 374 825D+01
2 2 2 2 6.5 2.0 1.5 1.0 1.0 198 0.123 752 317 696 277D−02
3 2 3 2 3.0 2.0 2.0 1.0 1.0 87 0.248 683 747 889 112D−01
3 3 3 3 5.0 1.5 1.0 1.5 0.5 136 0.965 754 433 724 946D−03
4 3 3 3 5.0 2.0 1.0 1.5 1.0 138 0.242 694 501 548 593D−02
4 4 4 4 4.0 1.5 1.0 1.5 1.0 83 0.556 025 856 060 273D−01
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Table A14. Exact values of the semi-infinite integral H̃(s) obtained to 15 correct decimal places
using the infinite series given by equation (55). (s = 0.999, nx = λ, ν = n3 + n4 + 1

2 ,
nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 max K̃(s)

1 1 2 0 3.0 1.0 1.0 1.0 1.0 109 0.338 401 188 224 347D−01
2 1 2 1 4.0 1.5 1.5 0.5 1.0 135 0.159 408 922 374 824D+01
2 2 2 2 6.5 2.0 1.5 1.0 1.0 246 0.123 752 317 696 278D−02
3 2 3 2 3.0 2.0 2.0 1.0 1.0 113 0.248 683 747 889 112D−01
3 3 3 3 5.0 1.5 1.0 1.5 0.5 197 0.965 754 433 724 948D−03
4 3 3 3 5.0 2.0 1.0 1.5 1.0 191 0.242 694 501 548 593D−02
4 4 4 4 4.0 1.5 1.0 1.5 1.0 132 0.556 025 856 060 273D−01

Table A15. Evaluation of the semi-infinite integral H̃(s) using the SD̄ method (53) of order 5
(SD̄(2,5)

5 ). (s = 0.999, nx = λ, ν = n3 + n4 + 1
2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 SD̄
(2,5)
5 Error

1 1 2 0 3.0 1.0 1.0 1.0 1.0 0.338 401 1882D−01 0.38D−13
2 1 2 1 4.0 1.5 1.5 0.5 1.0 0.159 408 9224D+01 0.92D−10
2 2 2 2 6.5 2.0 1.5 1.0 1.0 0.123 752 3131D−02 0.46D−10
3 2 3 2 3.0 2.0 2.0 1.0 1.0 0.248 683 7479D−01 0.94D−12
3 3 3 3 5.0 1.5 1.0 1.5 0.5 0.965 754 4370D−03 0.33D−11
4 3 3 3 5.0 2.0 1.0 1.5 1.0 0.242 694 5011D−02 0.47D−11
4 4 4 4 4.0 1.5 1.0 1.5 1.0 0.556 025 8560D−01 0.17D−11

Table A16. Evaluation of the semi-infinite integral H̃(s) using the HD̄ method (36) of order 7
(HD̄

(2)
7 ). (s = 0.999, nx = λ, ν = n3 + n4 + 1

2 , nγ = 2(n3 + n4) + 1 and ζs = ζ1 + ζ2.)

n3 n4 nk λ R1 ζ1 ζ2 ζ3 ζ4 HD̄
(2)
7 Error

1 1 2 0 3.0 1.0 1.0 1.0 1.0 0.338 401 1882D−01 0.82D−12
2 1 2 1 4.0 1.5 1.5 0.5 1.0 0.159 408 9232D+01 0.86D−08
2 2 2 2 6.5 2.0 1.5 1.0 1.0 0.123 752 2853D−02 0.32D−09
3 2 3 2 3.0 2.0 2.0 1.0 1.0 0.248 683 7488D−01 0.95D−10
3 3 3 3 5.0 1.5 1.0 1.5 0.5 0.965 754 4452D−03 0.12D−10
4 3 3 3 5.0 2.0 1.0 1.5 1.0 0.242 694 5060D−02 0.44D−10
4 4 4 4 4.0 1.5 1.0 1.5 1.0 0.556 025 8564D−01 0.36D−10

Table A17. Values of Kn200,n400
n100,n300 with 15 exact decimal places obtained using the infinite series

with the sine function (52) for evaluating the semi-infinite integrals. ( �Ri = (Ri , 0, 0), i = 3, 4.)

n1 n2 n3 n4 nγ R3 R4 ζ1 ζ2 ζ3 ζ4 Kn300,n400
n100,n200

1 1 1 1 5 5.0 3.5 2.0 1.0 2.0 1.0 0.284 363 465 672 292D+00
2 1 2 1 7 8.5 5.0 2.0 2.5 2.0 2.5 0.110 336 129 722 211D+00
2 2 2 2 9 7.5 5.0 1.0 0.5 4.5 5.0 0.191 523 537 406 420D−01
2 2 3 2 11 7.5 5.5 1.0 0.5 4.0 4.5 0.339 147 631 001 087D+00
2 2 3 3 13 8.5 6.0 1.0 0.5 4.0 5.0 0.368 375 307 409 424D−02
2 2 4 3 15 8.0 4.5 1.0 1.0 4.0 5.0 0.417 362 637 051 378D−02
2 2 4 4 17 7.0 4.5 1.0 0.5 4.0 3.5 0.165 335 595 051 352D−01
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Table A18. Evaluation of Kn200,n400
n100,n300 using SD̄

(2,5)
5 for evaluating the semi-infinite integrals.

( �Ri = (Ri , 0, 0), i = 3, 4.)

n1 n2 n3 n4 nγ R3 R4 ζ1 ζ2 ζ3 ζ4 Kn300,n400
n100,n200 Error

1 1 1 1 5 5.0 3.5 2.0 1.0 2.0 1.0 0.284 363 4657D+00 0.19D−15
2 1 2 1 7 8.5 5.0 2.0 2.5 2.0 2.5 0.110 336 1297D+00 0.32D−12
2 2 2 2 9 7.5 5.0 1.0 0.5 4.5 5.0 0.191 523 5374D−01 0.18D−14
2 2 3 2 11 7.5 5.5 1.0 0.5 4.0 4.5 0.339 147 6310D+00 0.13D−12
2 2 3 3 13 8.5 6.0 1.0 0.5 4.0 5.0 0.368 375 3074D−02 0.15D−14
2 2 4 3 15 8.0 4.5 1.0 1.0 4.0 5.0 0.417 362 6371D−02 0.19D−15
2 2 4 4 17 7.0 4.5 1.0 0.5 4.0 3.5 0.165 335 5951D−01 0.11D−16

Table A19. Evaluation of Kn200,n400
n100,n300 using HD̄

(2)
7 for evaluating the semi-infinite integrals.

( �Ri = (Ri , 0, 0), i = 3, 4.)

n1 n2 n3 n4 nγ R3 R4 ζ1 ζ2 ζ3 ζ4 Kn300,n400
n100,n200 Error

1 1 1 1 5 5.0 3.5 2.0 1.0 2.0 1.0 0.284 363 4657D+00 0.53D−13
2 1 2 1 7 8.5 5.0 2.0 2.5 2.0 2.5 0.110 336 1297D+00 0.54D−11
2 2 2 2 9 7.5 5.0 1.0 0.5 4.5 5.0 0.191 523 5374D−01 0.27D−12
2 2 3 2 11 7.5 5.5 1.0 0.5 4.0 4.5 0.339 147 6310D+00 0.18D−10
2 2 3 3 13 8.5 6.0 1.0 0.5 4.0 5.0 0.368 375 3074D−02 0.21D−12
2 2 4 3 15 8.0 4.5 1.0 1.0 4.0 5.0 0.417 362 6371D−02 0.39D−13
2 2 4 4 17 7.0 4.5 1.0 0.5 4.0 3.5 0.165 335 5951D−01 0.44D−14

Table A20. Values of Hn200,n400
n100,n300 with 15 exact decimal places obtained using the infinite series

involving the sine function (57) for evaluating the semi-infinite integrals. ( �R1 = (R1, 0, 0).)

n1 n2 n3 n4 nγ R1 ζ1 ζ2 ζ3 ζ4 Hn300,n400
n100,n200

1 1 1 1 5 4.0 3.0 1.5 2.0 1.5 0.858 504 667 474 839 674D−03
2 1 2 1 7 3.0 2.0 1.0 2.5 2.5 0.130 454 565 516 659 766D+00
2 2 2 2 9 8.0 2.5 2.0 3.0 4.0 0.100 293 050 393 527 849D−03
2 2 3 2 11 6.0 1.0 0.5 2.0 3.5 0.276 854 998 374 092 832D−01
2 2 3 3 13 7.5 1.0 1.5 3.0 3.5 0.579 455 660 776 437 258D−04
2 2 4 3 15 6.5 1.0 1.0 3.0 3.5 0.426 260 750 526 356 967D−03
2 2 4 4 17 6.5 1.0 0.5 2.5 2.5 0.290 068 840 927 043 548D−02

Table A21. Evaluation of Hn200,n400
n100,n300 using SD̄

(2,5)
5 for evaluating the semi-infinite integrals.

( �R1 = (R1, 0, 0).)

n1 n2 n3 n4 nγ R1 ζ1 ζ2 ζ3 ζ4 Hn300,n400
n100,n200 Error

1 1 1 1 5 4.0 3.0 1.5 2.0 1.5 0.858 504 6675D−03 0.71D−14
2 1 2 1 7 3.0 2.0 1.0 2.5 2.5 0.130 454 5655D+00 0.80D−12
2 2 2 2 9 8.0 2.5 2.0 3.0 4.0 0.100 293 0481D−03 0.16D−12
2 2 3 2 11 6.0 1.0 0.5 2.0 3.5 0.276 854 9984D−01 0.21D−13
2 2 3 3 13 7.5 1.0 1.5 3.0 3.5 0.579 455 6606D−04 0.18D−13
2 2 4 3 15 6.5 1.0 1.0 3.0 3.5 0.426 260 7505D−03 0.16D−13
2 2 4 4 17 6.5 1.0 0.5 2.5 2.5 0.290 068 8409D−02 0.18D−13
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Table A22. Evaluation of Hn200,n400
n100,n300 using HD̄

(2)
7 for evaluating the semi-infinite integrals.

( �R1 = (R1, 0, 0).)

n1 n2 n3 n4 nγ R1 ζ1 ζ2 ζ3 ζ4 Hn300,n400
n100,n200 Error

1 1 1 1 5 4.0 3.0 1.5 2.0 1.5 0.858 504 6687D−03 0.13D−11
2 1 2 1 7 3.0 2.0 1.0 2.5 2.5 0.130 454 5655D+00 0.20D−11
2 2 2 2 9 8.0 2.5 2.0 3.0 4.0 0.100 293 0473D−03 0.31D−11
2 2 3 2 11 6.0 1.0 0.5 2.0 3.5 0.276 854 9984D−01 0.33D−11
2 2 3 3 13 7.5 1.0 1.5 3.0 3.5 0.579 455 6599D−04 0.86D−13
2 2 4 3 15 6.5 1.0 1.0 3.0 3.5 0.426 260 7504D−03 0.13D−12
2 2 4 4 17 6.5 1.0 0.5 2.5 2.5 0.290 068 8410D−02 0.44D−12

The numerical values of the semi-infinite integrals K̃(s) and H̃(s) are obtained for
s = 0.001 and 0.999. In these regions, the integrand oscillates rapidly. If we let
s = 0 or 1, the integrand will be reduced to the term [ζ 2

s + x2]−nkxnx jλ(vx), because the
terms k̂ν[Rγ(s, x)]/[γ(s, x)]nγ becomes constant and hence the asymptotic behaviour of the
integrand cannot be represented by a function of the form e−αx jλ(x). Consequently, the
rapid oscillations of the spherical Bessel functions cannot be damped and suppressed by the
exponential decreasing functions k̂ν .

In the numerical evaluation of Kn200,n400
n100,n300 and Hn200,n400

n100,n300 we let λ and nx vary to show the
efficiency of the new approach in evaluating the integrals of interest in the case where the
oscillations of the integrand are very rapid.
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