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Abstract

Analytic expressions of three-centre two-electron Coulomb and hybrid integrals
over B functions are obtained using the Fourier transform method thoroughly
explored by Steinborn’s group. These analytic expressions involve semi-infinite
integrals which are slowly convergent due to the presence of hypergeometric
and spherical Bessel functions in the integrands. We have proven that
these hypergeometric functions can be expressed as finite expansions and the
integrands involving these series satisfy all the conditions required to apply
the H D approach which greatly simplifies the application of the nonlinear D-
transformation. This work presents a rapid and accurate evaluation of these
integrals, obtained by using a new approach, which we called SD. This new
method is based on the H D and D methods and some practical properties of
spherical Bessel, reduced Bessel and sine functions. The S D method has greatly
simplified the calculations, avoiding the long and difficult implementation of
the successive zeros of the spherical Bessel function and a method for solving
linear systems, which are required by H D and D.

PACS numbers: 0230G, 0230R, 3115

1. Introduction

This paper continues a series of previous studies [1,2], concerning the rapid and accurate
evaluation of molecular multicentre integrals to a high pre-determined accuracy for the
development of molecular electronic structure calculations over Slater-type orbitals (STOs)
[3.4].

STOs constitute an important basis set for all calculations of physical properties of
molecules and solids, which use the linear combination of atomic orbitals (LCAO) approach
[5]. However, the systematic use of STOs has been prevented by the fact that their multicentre
integrals turned out to be extremely complicated. Gaussian-type orbitals (GTOs) were
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introduced by Boys [6] and successfully used in the LCAO calculations [6-8]. This is due to
the fact that GTOs can readily be translated. Unfortunately, these functions failed to satisfy two
pragmatic requirements for analytic solutions of the appropriate Schrodinger equation, namely
the cusp condition [9] and exponential decay at long distances [10]. As is well known, STOs
fulfil the cusp condition and decline exponentially for large distances like exact solutions of the
Schrodinger equation. This is why the use of STOs instead of GTOs reduces considerably the
number of molecular integrals that occur in an LCAO calculation (short expansions of atomic
orbitals are needed if STOs are used as basis functions).

In this paper, we use the so-called B functions [11-13]. Although these functions have a
more complicated mathematical structure than STOs, they have much more suitable properties
in multicentre integral problems [12, 14—17], among them being the exceptional simplicity of
their Fourier transforms [15, 18]. Note that STOs can be expressed as finite linear combinations
of B functions [13, 14].

The basis set of B functions is well adapted to the Fourier transform method [19-21]. This
method allowed analytic expressions to be developed for multicentre bielectronic integrals
[20,21]. These analytic expressions involve semi-infinite very oscillatory integrals.

In the case of three-centre two-electron Coulomb and hybrid integrals over B functions,
the integrands involve hypergeometric series and spherical Bessel functions. We have shown
[22,23] that these hypergeometric series can be expressed as finite expansions and that the
integrands of interest satisfy fourth-order linear differential equations of the form required to
apply the nonlinear D- [24] and D-transformations [25, 26]. We also shown the superiority of
these transformations over the alternatives using Gauss—Laguerre quadrature, the e-algorithm
of Wynn [27] or Levin’s u transform [28], in evaluating these kinds of integrals. Unfortunately,
the calculations required by these nonlinear transformations present severe numerical and
computation difficulties. In previous work [23, 29, 30], we showed that the order of the linear
differential equation satisfied by a function f(x) of the form f(x) = g(x)j;(x), where j;(x)
denotes the spherical Bessel function of order / and g(x) = h(x) e?™®), where A (x) and ¢ (x)
have asymptotic expansions in inverse powers of x as x — +00, can be reduced to two by
keeping all the conditions required to apply D and D fulfilled. This led to the HD and H D
methods which greatly simplified the calculations.

The aim of this work is to further simplify the application of the above methods as well
as to reduce the calculation times while maintaining the same high accuracy.

As is well known the numerical integration of oscillatory integrands is very difficult when
the oscillatory part is a (spherical) Bessel function [31,32]. The main idea of this work is
to replace the spherical Bessel function by a simple trigonometric function (sin(x)) using
practical properties of reduced Bessel functions, involved in the analytic expressions of the
integrals of interest, and some properties of spherical Bessel and sine functions. This led to
the S D method where the long and difficult implementation of the successive positive zeros of
Jji(x) and a method for solving linear systems, which are very time consuming and are required
by HD and D, are avoided. In the SD approach, the use of Cramer’s rule to calculate the
approximations of semi-infinite highly oscillatory integrands was made possible by the fact
that the zeros of the sine function are equidistant.

The numerical results given in the appendix show the efficiency of the new approach in the
evaluation of the integrals of interest. The numerical evaluation of the semi-infinite integrals
are obtained for s = 0.001 and 0.999. In the regions where s is closer to 0 or 1, the oscillations
of the integrands become very rapid. Indeed, when we make the substitutions s = 0 or 1,
the rapid oscillations of the spherical Bessel function cannot be damped and suppressed by
the exponentially decreasing function k, involved in the integrand. This is due to the fact that
when s = 0 or 1, the argument of the reduced Bessel function IQU becomes a constant. It should
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also be mentioned that the regions where s is close to 0 or 1 carry a very small weight due to
the factors s2(1 — 5)'! in the integrands [33-36].

2. General definitions and properties

The three-centre two-electron Coulomb integral over B functions is

nalama,nglam *
Ko =/”[ (0, R=02)] [, (5 R — 0B)]

1 N o
B (22, R—0A) By, (¢4, R — OC) dR AR/ (1)
where A, B and C are three arbitrary points of the Euclidean space &3, while O is the origin
of the fixed coordinate system.

The hybrid integral over B functions is

el F_om 8™ (e F— oM\
nilymy,nzlzms — Py ”l [l é‘la n3,l3 §3,

Sl " (cz,R OA) e (60 R = 03) dRdR’ 2)
where A and B are two arbitrary points of the Euclidean space &;, while O is the origin of the
fixed coordinate system.

The B function is defined as follows [12, 13]:

(cr)

mén—l/z(CF)Ylm(@;,(p;). 3)

B¢, 7) =
The B function can only be used as an LCAO basis functions if n € N holds. For
—I < n <0, a B function is singular at the origin, and if » = —I — v with v € N holds, then
a B function is no longer a function in the sense of classical analysis but a derivation of the
three-dimensional Dirac delta function [37].
Y" (0, ¢) denotes the surface spherical harmonic and is defined by [38]

QI+ DI —|mY)
A (I +|m|)!)

172 ‘
Y (0. 9) = '"+""'[ } P"l(cos §) e “

where P/" (x) is the associated Legendre polynomial of /th degree and mth order.
The reduced Bessel function l€n+1 2(2) is defined by [11, 12]

]2 — E n+l/2K 5
n+1/2(2) - (2) n+1/2(2) (5)

s ! 1
e ;j!(n—p!(zz)f ©

where K./, denotes the modified Bessel function of the second kind [39].
Reduced Bessel functions satisfy the recurrence relation [11]

72n+1/2(2) = (2n — 1)/€n71/2(2) + Zzlg(nfl)fl/Z(Z)- @)
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A useful property satisfied by 12,”1 12(z) is given by [39]

d " 12,,+1/2(z) _ (4 " 7T Knsi2(2)
zdz 72n+1 - zdz 2 gntl/2

A

——ym knima172(2)
- (_ ) Z2(n+m)+1 :

®

Slater-type orbitals are defined in normalized form according to the following relationship
(3.4]:

X0 @ ) =Nm, O)r" e Y (07, ¢7) )

where n = 1,2,..., 1 =0,1,....n—1land m = —[,-l+1,...,] — 1,1 and where
N(n, o) = ¢ [(20)**! /(2n)!]"/? denotes the normalization factor.
Slater-type orbitals can be expressed as finite linear combination of B functions [13]:

n—l n—Il— I+
- (=D"""P(n = D'1277( + p)! -
m , — B™ s 10
Ko (6, F) ; @p —w = DiGn =2 —2pyn B (10)
where
~ n—-0/2 if n—1liseven
p= _ ' (1)
n—1+1)/2 if n—1isodd
and where the double factorial is defined by
QN =2x4%x6x---x (2k) = 2*k!
2k + 1)!
(2k+1)!!=1x3x5x'o~x(2k+1):% (12)

orn=1.

The Fourier transform EZ’J(;, p) of B, (¢, 7) is given by [15, 18]

B" n _1 —ip-r pm Sy 4o
Bl1,l(§7 P) = (27[)3/2 ﬁe p Bn,l(é"r) dr (13)
2 g (Hilp)! "
VT @ eppye O (14)

The Rayleigh expansion of the plane wavefunctions is given by [40]
. +00 i
T =" " A (D) i (PIFD Y] 05, 07) [V)" 05, )] (15)
1=0 m=—I
The spherical Bessel function j;(x) of order [ € Ny is given by [39]
Ji) = [/ @012 T p () (16)

where Ji,1/2(x) denotes the Bessel function of the first kind [39].
The spherical Bessel function is also defined by [39, 41]

d \'/si
Ji) = (=D« (E) (Smx(x)). (17)
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Ji(x) and its first derivative j/(x) satisfy the recurrence relations [39]

xji—1(x) + xji1 (x) = 2L+ 1) i (x)

(18)
Lji—1(x) = (L + 1) jia (x) = 21+ 1) ji (x).
For the following, we set jj}, P forn = 1,2, ... the successive positive zeros of j;(x).
Jir1/ is assumed to be 0.
Gaunt coefficients are defined as [42—-48]
T 2w
(limy|loma|lzms) = /9 0/ O[Y;'f“ O, )Y, (6, 9)Y,.° (0, 9) sin 6 d6 dg. (19)
=0 Jp=

These coefficients linearize the product of two spherical harmonics:

11+12

YO, YO, 9) = > (hmallimilimy —m) Y™ ™ @.9)  (20)

[=lmin 2

where the subscript [ = Iy 2 in the summation symbol implies that the summation index /
runs in steps of 2 from /i, to [ + [, and the constant [, is given by [45]

max(|ly — Ip|, |my — my]) if [y +0b+max(|l; — |, |my — my]) is even
min = {max(|11 — b, lmy —m]) + 1 if 1y + L +max(Jly — la|, |ma — my ) is odd.
2D
The Fourier integral representation of the Coulomb operator 1/|F — 131 | is given by [49]
1 1 e—ik-(F=Ry)
m =52 A — dk. (22)

The hypergeometric function is given by [39]

< (@) (B)x"
Fi(a, B; y; =E —_— 23
2Fi(a, By x) 2o (0! (23)

where («), represents the Pochhammer symbol, which is defined by [39]

(@) =1

(24)
(@), =afa+D)(a+2)---(a+n—1) for n#0
where I denotes the Gamma function [39]. For n € Ny:
| 2n)!
Fn+1)=n! and F(n+§)= 22"n!ﬁ' (25)

The infinite series (23) converge only for x| < 1, and they converge quite slowly if |x| is
slightly less than one. The corresponding functions nevertheless are defined in a much larger
subset of the complex plane, including the case |x| > 1. Convergence problems of this kind
can often be overcome by using nonlinear sequence transformations [50].

Let « be a negative integer. For n € Ny:

—a (26)

(@), =13 @, =a(@x+D(a@+2)---(x+n—1) n <
(), =0 n>—o+l.
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Now if @ or B in the infinite series (23) is a negative integer, then by using the above
relations we can show that the infinite series (23) will be reduced to a finite sum.

For the following, we define AW for a certain y, as the set of infinitely differentiable
functions p(x), which have asymptotic expansions in inverse powers of x as x — +00, of the

form

p(x)~xy<a0+ﬂ+2+.--) 27)
X

X2
and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in (27) term by term.

From (27) it follows that AW D A¥=D 5 ...,

We denote by A for y € R, the set of functions p(x) such that p(x) € A% and
lim,_ 400 X ¥ p(x) # 0. From this definition, it follows that if p € A% then p(x) has an
asymptotic expansion in inverse powers of x as x — +oo of the form given by (27) with
ap 75 0.

We defined the functional og(p) by ao(p) = a, = lim,— 100 X7V p(x).

We defined eA”’ for some k as the set of g(x) = e?®), where ¢ (x) € A,

Lemma 1. Let p(x) be in A(V)for a certain y. Then

(a) If y # 0 then p'(x) € A= otherwise p(x) e ACP,

(b) If g(x) € A® then p(x) q(x) € AV*) and ap(p q) = aro(p) eto(q)-

(c) Vk e R, x*p(x) € A®Y) gnd ao(xFp) = ap(p).

(d) The function c p(x) € AY) and ag(c p) = cag(p) forall c # 0.

(e) Ifq(x) € A® andy —8 > 0 then the function px)+q(x) € AW and oy(p+q) = ap(p).
Ify = 8 and ao(p) # —ao(q) then the function p(x) + q(x) € AY) and ap(p +q) =

ao(p) + ao(q). _
(f) For m > 0 an integer, p’f (x) € A™) and ag(p™) = ap(p)™.
(g) The function 1/p(x) € ATY) and ag(1/p) = 1/a(p).

Proofs of the above properties can easily be obtained by using the properties of Poincaré
series [51].

Lemma 2. Let ¢ (x) be in A(V)for acertain’y.
The function kst 2(P(x)) is in AVeA” and can be written in the following form:
kn1 2@ () = g1 (x)e™*)
where
¢ € A"V and ag(¢1) = (ao(#)" # 0.

By using the analytic expression of the reduced Bessel function which is given by
equation (6) and using the properties of Poincaré series, one can easily prove lemma 2.

3. Three-centre two-electron Coulomb and hybrid integrals over B functions

By substituting the integral representation of the Coulomb operator (22) in the expression of
the three-centre two-electron Coulomb integral (1), we obtain

n2lzm2,n4l4m4 _ 1
nilymy,n3lsmy — 2 I
214 Ji

KB, (61, 7)|e T B (0. P)),

na,l

I L
X(Bl, o P B (60 7 = (R = ) = 28)
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where
L - = . L — > — -~ —
r=R—-O0A '=—-R+0A R: = AB Ry = AC.
For the hybrid integral we obtain
2F 1 —ix- n — " >
Homiios = 3z [, (B @0 P B (02,7,
> —ix-r =1 5\ \* d)_é
(Bt (L, 7Y || B (g3, — Rn));,,ﬁ (29)
where
L = = - . —> > —
Fr=R-O0A =R — OB Ry = —AB.

The following arguments can also be applied to the hybrid integral.

In [22,29], we showed that the term ( (;1, ) |e"" ” an lz(gz, 7)); in the above
equations, has an analytic expression inV01V1ng a hypergeometric function which is given
by

+1;1+

) , ) §§ —g (30)

l—k—l]—12+1 l—k—l1—lz 3 x2
2P

where k and [ are positive integers.

One of the first two arguments (| —k — 1y — L +1)/2, I —k — 11 — 15)/2+ 1 of the
hypergeometric function is a negative integer. Thus, the above infinite series is reduced to a
finite expansion. The analytic expression of the term in 7, involving in equations (28) and (29),
is given by [22,29]

C W 2eies

oni+i+na+lh (nl + 11)'(712 + 12)!

( ni, 11 (Cl’ r) ieﬂx ’ |an I3 (§2’ I‘))

Lmax

x> (=) (amallimy|lmy — my) Y " 0z, @x)
I=lmin,2

ni+ny k. kl !
1 +1y ko Qny—i—-D!2ny, —i — D!
x Y Z[(,-_ Dy — )k —i — 1)!(nz—k+t>’2"'*”2"‘}

k=2 i=k,

(3D

D(k+1y +1 +1+ Den=1 & (n/2) (M+1/2), 5
T 2. k+]|+l2 Z(_ ) T3 e
24T (14 3) [¢2 + [+3), 7%
where
ki =max(l,k —ny), ky =min(n;, k—1), ¢, =0+ &
n
!/

= —— if is even
n ) n

+1
n = _nT otherwise.

The Fourier transform method allowed analytic expression to be developed for the second term
in the integrand [20, 21]:

( ng, 14 54’ _W)|e_lx : |Bn3 I3 (€3’ 7// - (153 - ﬁ4))):j”'
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The above results led to an analytic expression for the three-centre two-electron Coulomb
integral over B functions, which is given by

ne =1 —U+l— 1 +2r+1 ng=k+0l+10
n, =23+l +ns+10) — G+1) —1'+1

w = (my —my) — (m3 —mj) + (my — mj)

[v(s, 0)1* = (1 — $)¢F +5&5 +s(1 — $)x?

n=l—k—1—bL+1 AZZW
5=(1-9)(R; — R) —
v=nytns+l+l—1—j+1
mzy = (m3 — mé) — (mgy —my)
’CZT;]ZZ:IZ Zﬁ:::j — 8(47'[) \/_§ 2n3+l3 1 é_2n4+l4 1
CLE+DN QL+ D! (ns+l3+n4+14+1)!
20htl (g + I (ny + 1)) (n3 + [3)! (ng + 14)!

L1+l l)l
X Z 22n1+2n2+l (Limy|lma|lmy — my)
l lmm
5 "i"f i 2k @ny —i— 1) Qny—i — )i !
= = G—D!'nmy—D)!k—i—1D!(np, —k+1i)!
% Z Z )l’ l4l’l’l4|l4 — lim4 — mg|limg)
- p QL+ D234, = 1) + 11!
L=0my=—1,

I3 I

% Z Z l3m3|l3 lém3 — m%|l%m%)
QL+ DIN2( — 1) + 11!

1=0 my=—1}

L+,

XY (lm|Lm|!'m} — ml) Ry, VI~ " O, PR
U=l

min,2

L—li+,—1,
X Z (I3 — Iyms — mj|ly — Lymy — mj|l3amzs)
ZM—lmm 2
l+l<,4
x Z (lma = mi|l3a(m3 — m5) — (ma — m}) | Ap)
A= mxn 2

Al (_1)(l’+l’+/’)/2 (_l)j
X
Z < ) Qnstngtlitly— J+1(I’l3 +ng+l3+10—j+1)!

) gusnk—z-lrr(kul +h+1+1) i 1y (/2 (O 1)/22),
(+3/2) (1 +3/2),r1 >

r=0
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1
y / Sn3+]3+l4,12 (1 _ S)’14+l4+l371§ Y)'ft(eg, (,017)

s=0
X / [¢7+x*] " x™ Kl Run (6, 2] J(vx) dx ds. (32)
o [y (s, 01"

The numerical evaluation of the above analytic expression turned out to be very difficult. This
is due to the presence of semi-infinite integrals, which will be referred to as I%(s), whose
integrands oscillate rapidly, due to the spherical Bessel functions j; (vx), in particular for large
values of A and v since the zeros of the function become closer.

The semi-infinite integral K(s) involved in equation (32) is given by

~ +oo —ng ic\v R ) .
K@s) = / . [¢2+x7] ™ xm W jo(vx) dx. (33)

The above semi-infinite oscillatory integral can be transformed into an infinite series of
integrals of alternating sign. This infinite series is given by

o L rm e ku[Ray(s, 0]
IC(S)_;-[;J [Q +x] X —['y(s,x)]”v Jo(vx) dx (34)

where j;' , = ji,i /v, n =1,2,... which are the successive positive zeros of j, (vx). jf’v is
assumed to be 0.

The above infinite series is convergent and alternating, therefore the sum of N first terms,
for N sufficiently large, gives a good approximation of the semi-infinite integral. Unfortunately,
the use of this approach is very time consuming.

In previous work [22], we showed that the integrand of l@(s), which will be referred to
as Fi(x), satisfies a fourth-order linear differential equation of the form required to apply the
nonlinear D-transformation. The results obtained were satisfactory compared with the others
obtained using the quadrature of Gauss—Laguerre, the e-algorithm of Wynn [27] and Levin’s
u transform [28].

The approximation D* of K(s) is given by [22]

X1 3 n—lB.
Dj;*):/ Fe@ydr+Y " FO oyt Y 2L 1=0,1,....3n (35)

where x; = ]}lfj forl =0,1,...,3n. D,(l‘” andtheBk,i fork=1,2,3andi =0,1,...,n—1
are the (3n + 1) unknowns of the linear system.

As can be seen from the above equation, the computation of the three successive derivatives
of F(x) is required for the calculations.

The calculation of 31 successive zeros of the spherical Bessel function is also necessary.
This presents severe numerical and computation difficulties. Added to this is the fact that the
order of the linear system increases as n becomes large.

In [23, 29, 30], we showed by using some practical properties of spherical Bessel, reduced
Bessel functions and Poincaré series that we can obtain a second-order linear differential
equation satisfied by f(x) = g(x) j(x), where g(x) = h(x) e?™ and where h(x) € A" and
¢(x) € A® for some y and k. We also showed that if £ > 0 and ¢¢(¢p) < O then f(x) satisfies
all the conditions required to apply the nonlinear D-transformation using the second-order
differential equation. This result led to the H D approach.

The integrand F¢(x) can be written as

Fie(x) = g(x) jn(x)
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where

e _n, o[Ragy (s, 2)]
[y(s, 01"

It is shown that g(x) is of the f0~rm h(x)e?™, where A (x) and ¢ (x) satisfy all of the above
conditions. The approximation of /C(s) using the H D method is given by [23, 29, 30]

g(x) = [¢2 +x7]

n—1 g5

_ X1 .
HD® :/ f,@(z)dmg(x,)j;(vx)x,zz% 1=0,1,....,n (36)
0 i=0 1

where x, = ji*},1 =0,1,...,n. HD? and By, fori = 0,1,...,n — 1 are the (n + 1)
unknowns of the linear system.

Itis clear from equation (36) that the reduction of the order of the linear differential equation
has greatly simplified the application of the nonlinear D-transformation. The calculation of
the successive derivatives of the integrand is avoided, the order of the linear system to solve
is reduced to (n + 1). However, we still have to calculate n successive zeros of the spherical
Bessel function. In [23,29,30], we showed that the H D approach led to a high accuracy
and a substantial gain in the calculation times. The convergence properties of this approach
were analysed [23, 30] and they showed that from a numerical point of view the H D method
corresponds to the most ideal situation.

The aim of this paper is to further simplify the calculations as well as to reduce the
calculation times while maintaining the same high accuracy.

4. The S D method for improving convergence of semi-infinite oscillatory integrals

Theorem. Let f(x) be a function of the form f(x) = g(x) j,(x), where g(x) € Cz([O, +oo[),
which is the set of twice continuously differentiable functions, and of the form g(x) =
h(x) e?®, where h(x) € A(V)for a certain y and ¢ (x) € A® for a certain k.

Ifk >0, ag(¢p) < Oandforalll =0,1,..., A —1:

(4N .
lim x/~*! (m> (* () nmii(x) =0

x—0

then f(x) is integrable on [0, +oo[ and an approximation of f0+oo f(x)dx is given by

Y () (oo + i+ )" F (i) [[x2,G (i )]

SD*7 = (37)
Yo () @ofar+ i+ )" [[x7; G i)
where o = m, x; = (I + Da forl = 0,1,..., G(x) = (ﬁ)x (x’\_lg(x)) and where

F(x) = [ G() sin(®) dr.

Proof. Let us consider ;™ f(x)dx = [ g(x) ju(x).
By replacing the spherical Bessel function jj, (x) by its analytic expression given by (17),
one can obtain

+00 +00 d A
/ fx)dx = (=D* / x* g(x) <—) Jo(x)dx. (38)
0 0 x dx
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By integrating by parts until all the derivatives of j,(x), with respect to x dx, disappear in
the last term on the right-hand side of (38), we obtain

+o00 a—1 . d \/ . d V1 o
fo f)dx = [;(—1) B ((E) (x*~ g(X))) ((E) jo(X))}

0

+00 d "
+/0 ((E) (x/\—lg(x))> Jo(x) x dx. (39)

Using equation (17) and replacing jo(x) by sin(x)/x, the above equation can be rewritten
as follows:

400 Ar—1 d 1
fo fx)dx =— [gxl-“‘ ((E) (x*—‘g<x>)) mml

+00 A
+/0 ((%) (xk_lg(x))) sin(x) dx (40)

where g(x) is exponentially decreasing as x — +4+o0o. From this it follows that

(L)l (x*~'g(x)) is also exponentially decreasing as x — +oo and consequently for all

xdx
d 1
Jim w7 ((F) (X“gm)) Jr1i() =0

[ >0:
Aslim,_, o x4 ((%)l (xk_lg(x))> Jr1—1(x) = 0,forl =0, ..., »—1 then the above
equation can be rewritten as

+00 +00 d A
/0 fx)dx :/0 [(m> (xxlg(x)):| sin(x) dx. 41

Let us consider the function G (x) = (L)A (x*~' g(x)). By using the Leibnitz formulae

xdx

and the fact that g(x) = h(x) e?™, we can obtain

. All weoi [ d o < Al A W,
G(x)zg(x—zi)nx (E) g(x)_zz(,\ 21)"<m)x

i=0 m=0

d m d A—i—m
_— I ¢ (x)
() ) (&) =) “

Using the properties of asymptotic expansions given by lemma 1, we can show that

(—d ) h(x) € AV
x dx

+00

d o
<—) e?™ = p(x)e?™ where ¢ € A@K*2)
xdx

and consequently

a2 (4" AN Lo\ L ()
() ) () )

where the function H; ,,(x) € AV+*=i=mk=4),
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By using lemma 1, we can show that G (x) can be rewritten as

G(x) = H(x)e?™ where H(x) € AV+—% (43)
sin(x) satisfies a second-order linear differential equation given by

sin(x) = —sin”(x). (44)
Let the function F (x) be defined by

F(x) = G(x) sin(x)

then
sin(x) = F(x)/G(x).

By substituting this in the linear differential equation satisfied by sin(x) we can obtain,
after replacing G(x) by H(x)e?™, a second-order linear differential equation satisfied by
F(x), which is given by

F@x) = q1(x)F (x) + q2(x) F" (x) (45)
where the coefficients g (x) and ¢, (x) are defined by

2(¢'(x) + H'(x)/H(x))

T @)+ H@)/H@) — (@) + H'(0)/H(x)) 46)
-1

T+ (@) + H'(x)/H(x))* = (¢/(x) + H'(x)/H(x))"

Using lemma 1, we can show thatif k = O then g, (x) € AV and ¢»(x) € A©), otherwise
q1(x) € AT and ¢, (x) € ACHKD,

Since k > 0 and ap(¢) < O, then the function F(x) is exponentially decreasing as
x — 400 and consequently is integrable on [0, +oo[ and for all / =7,2;i =1, 2:

lim ¢ " (x) 74D (x) = 0.
X—>+00

It is easy to show that ¢; o = limy 400 X "gi(x) = 0 for i = 1, 2. From this it follows
that for every integer / > —1:

2
Zl(l—1)...(1—i+1)q,,0=0;£1.
i=1

All the conditions required to apply the D-transformation are now shown to be satisfied
by F(x).
The approximation of f0+°° F(x)dx = 0+°° f(x)dx is given by

_ Xx; n—1 p .
SD? =/0 Fx)dx + (=D G(x)) x} ’i 1=0,1,....,n (47)
i=0 1

where x; = (I + 1)z forl = 0, 1, ... which are the successive zeros of sin(x).
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Following Levin in [28], we can use Cramer’s rule, since the zeros of sin(x) are_equidistant,
to obtain the simple solution which is given by equation (37) for the unknown SD®. O

5. Evaluation of three-centre two-electron Coulomb and hybrid integrals
The integrand of l@(s) is given by Fr(x) = g(x)ji (vx), where g(x) is defined by

M, ko[ Raay (s, )]
[v(s, )"

It is clear that the function g(x) belongs to C*([0, +00]).
Let the function ¢ (x) be defined by

@ (x) = Rasy(s, x)
= R34\/(1 — $)F + 583 +s(1 — s)x2.

From lemma 1, it follows that ¢ (x) € A and 1/ [~(s, 0" e Ay,
The function [¢2 +x?] ™ = x 2% [1 + ¢2/x?] ™ e A2,
Using lemmas 1 and 2, we can obtain an expression for g(x), which is given by

g0 = [¢7+47]

h(x) c A~(v+nx—2nk—ny)

By et )
gx) (x)e {¢ c AD with  ag(¢p) > 0.

With the help of equation (8) and the fact that % = %f—z, one can easily show that if
n, = 2v then for j € N:

d V[ &lRay(s, 01| ok [Ray(s, %))
(xdx) [ [v(s, )1 }_( D e P 0

and for n,, < 2v, we obtain

d O\ [ klRuvG, 01| (i . @Qu—n)
(de> [ [y(s, )] }_Z<i>(_l)] Qv —n, —2i)11

i=0

Kovj—i [Raay (s, x)]

xs' (1 —s)! . 49
( ) G0 (49)
For I € N, we obtain after some algebraic operations
d L B\ (e+A-DI
(xdx) Te0) = ;Z ( >< )(nxu— 2"
cnming (4T R [Ray (s, )]

M ; L 2 2 k—i+] v LA3 ) 50
xM(ng, i — j) [¢2+x°] — oo (50)

where
Mg, i—j) = (=2 npne+1) ... (g +i — j — 1).

As can be seen from equation (32), A < [ +13 — I +14 — I} < n,. From this it follows
thatif / < A — 1 then/ < n, — 1. Using this, we can show thatn, +1 —2i > Oforalli <.
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Now by using this argument and with the help of equations (48)—(50), we can show that

x—0

o d \' .
lim x/ ! <m) (x’\ 1g()c)) Jazi—1(vx) = 0.

Now itis shpwn that the integrand F (x) of K (s) satisfies all the conditions of the theorem.
Consequently, C(s) can be rewritten as

. 3 1 +00 d A xnx+)~—l ]21) [R34"}’(S, )C)] )
K(s) = m/):o ((xdx) [[{Sz+x2]"" o] :| sin(vx) dx (51

L& ol d V[ % kRauy(s, 017
_v“‘;/;n/v ((xdx) [[;32+x2]"k [v(s, x)]" } sin(vx) dx. (52)

The approximation of K(s) is given by

1 X (M)A i+ ) F i) [ [5G (i)
VR S (Y A i+ )/ [6E G ()]

SD* = (53)

where x;, = (I + DZ forl = 0,1,...,G(x) = ()%)A (x*~'g(x)) and where F(x) =
Jy G(@) sin(vr) dz.

As can be seen from equations (48)—(50), the calculation of G (x) does not present any
computation difficulties.

In the case of the hybrid integral H

nalamy,nglymy

nilim, nalm,» the semi-infinite integral is given by

~ +oo —Ny ]211 R k) .
H(s) = f . [c2+x2] 7" 2 W Jn(vx) dx (54)
X, s kR (s, 0]

where v = (2 — s)I%l. sy Rks Ny, V, 1y, Y(s, x) and A are defined according to equation (32).
As can be seen from the above equation, the integrand of H(s) is similar to 7, 7 (x). From
this it follows that

1 +00 d \V'[ x™% 1 J[Riv(s, x)] .
v /x=0 ((xdx) I:[gsz_,_xz]"k [ (s, )" ] sin(vx) dx (56)

1 +00 (n+)m/v d A x"-‘"')‘_l lzv[Rry(s, X)] .
T ;/nn/v ((de) [[{3+x2]"k [v(s, )] ] sin(vx) da. 57)

An approximation of H(s) can be obtained using the S D approach (53).

The use of equation (53) for calculating the approximations of K(s) and H(s) is more
advantageous than the use of the linear systems given by (35) or (36) where the computation
of the successive zeros of spherical Bessel function is necessary and where it is required to
compute a method for solving linear systems, which in the case of the integrals of interest, is
much more time consuming than using Cramer’s rule.

7:((3) =
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6. Conclusion

Three-centre two-electron Coulomb and hybrid integrals appear in molecular calculations. An
atomic orbitals basis of Slater-type functions can be expressed as B functions in order to apply
the Fourier transform method that allowed analytic expressions to be developed for molecular
integrals of interest. The numerical evaluation of these analytic expressions presents severe
computation difficulties due to the presence of semi-infinite very oscillatory integrals, whose
integrands involve a product of hypergeometric series, spherical Bessel and reduced Bessel
functions. We have proven that these hypergeometric series are reduced to finite sums and the
integrands satisfy all the conditions required to apply the H D method which greatly simplified
the application of the nonlinear D-transformation.

This work presents an extremely efficient evaluation of the integrals of question using the
new approach which we called SD. This approach relies on some practical properties of Bessel
and sine functions, which allowed the use of Cramer’s rule to calculate the approximations
SDE? of semi-infinite integrals. This led to a substantial simplification in the calculations
since the computation of the successive zeros of the spherical Bessel function and a method to
solve linear systems is avoided. For a given high accuracy, the SD method is faster than the
HD.

The progress obtained by the new approach is another useful step in developing software
for evaluating molecular integrals over Slater-type orbitals.

Appendix. Numerical results and discussion

The finite integrals involved in equation (53) are evaluated using Gauss—Legendre quadrature
of order 16. The finite integrals involved in equations (52) and (57) are transformed into finite
sums:

Xn n—1 X141
fo fde=Y)" f(x)dx.

1=0 /i

The terms of the above finite sum are evaluated using Gauss—Legendre quadrature of order
16.

The values with 15 correct decimal places are obtained for the integrals by using the
infinite series (52), (34), (57) and (55) which we sum until N = max (see tables Al, A2, AS,
A6, A9, A10, A13 and A14). Note that by using the infinite series involving the sine function
(52) and (57) instead of the infinite series involving the spherical Bessel function (34) and (55),
we need fewer terms in evaluating the integrals with 15 exact decimal places.

Table A1. Exact values of the semi-infinite integral K(s) obtained to 15 correct decimal places using
the infinite series given by equation (52). (s = 0.001,ny = A, v = n3+ns4+ %, ny, =2nm3+ng)+1
and & = &1 +82.)

ny ny mg A Ry Ry 4 o & & max K@)

75 15 15 1.0 1.0 1.0 125 0.126414190755008D—02
35 70 1.0 10 15 1.0 361 0.492082994200939D—-02
45 40 1.0 10 1.0 1.0 106 0.146157629412064D+00
35 30 05 05 15 1.5 135 0.861150036617796D+00
85 20 15 10 15 1.0 77 0.100445620385459D+00
35 30 1.0 10 1.0 15 81 0.204664014657073D+01
55 45 10 10 20 15 71 0.169055658807 174D+01

A AW WNDN—
AW WD = =
AW RN WD
wmhA R WD = O
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Table A2. Exact values of the semi-infinite integral K (s) obtained to 15 correct decimal places using
the infinite series given by equation (34). (s = 0.001,ny = A, v = n3+ns4+ %, ny =2(n3+ng)+1
and & = {1+ 5.)

n3  ng  ng Rs Ry & & ¢ & max K(s)

75 15 15 1.0 1.0 1.0 124 0.126414190755008D—-02
35 70 1.0 1.0 15 1.0 442 0.492082994200938D—02
45 40 1.0 10 1.0 10 166 0.146157629412064D+00
35 30 05 05 15 15 300 0.861150036617796D+00
85 20 15 1.0 15 1.0 116 0.100445620385459D+00
35 30 10 1.0 1.0 15 157 0.204664014657074D+01
55 45 1.0 10 20 15 158 0.169055658807174D+01

AR W WNN —
B W~ —
W OB N W
[ O ICR SRR N

Table A3. Evaluation of the semi-infinite integral K(s) using the S D method (53) of order 5
(SD). (s = 0.001, ny = A, v =n3+na+ 4,0, =23 +ng) + land & = 1 + 2.

ny ng  om Ry Ry & & & & SDYY Error

75 15 1.5 1.0 1.0 1.0 0.1264141908D—02 0.26D—13
35 70 10 10 1.5 1.0 04920829973D—-02 0.31D—-10
45 40 10 10 1.0 1.0 0.1461576294D+00 0.46D—12
35 30 05 05 15 15 0.8611500366D+00 0.33D—12
85 20 15 1.0 15 1.0 0.1004456204D+00 0.39D—10
35 30 1.0 1.0 1.0 15 02046640147D+01 0.89D—13
55 45 10 1.0 20 15 0.1690556588D+01 0.16D—11

BE W WNN —
BW W~ -
WA WD N
DB wWN e~ O >

Table A4. Evaluation of the semi-infinite integral K(s) using the H D method (36) of order 7
(HDP). (s = 0.001,ny = hy v =n3+n4+ 4,0, =203 +ng) + land & = ¢1 + )

ny  na o ng R R & & & & HDY Error

75 15 15 1.0 1.0 1.0 0.1264141908D—02 0.17D—12
35 70 10 10 1.5 1.0 04920829639D—-02 0.30D—09
45 40 1.0 10 1.0 1.0 0.1461576294D+00 0.19D—-10
35 30 05 05 15 15 0.8611500366D+00 0.12D—10
85 20 15 1.0 15 1.0 0.1004456206D+00 0.17D—-09
35 30 1.0 1.0 1.0 15 02046640147D+01 0.29D—10
55 45 10 1.0 20 15 0.1690556588D+01 0.71D—10

BEWWN N~
BW W~ —
WA WD
DR WD~ O >

Table A5. Exact values of the semi-infinite integral K (s) obtained to 15 correct decimal places using
the infinite series given by equation (52). (s = 0.999,ny = A, v = n3+n4+ %, ny =2(n3+ng)+1
and & = {1+ 5.)

ny na omg A Ry Re 4 o & & max K@)

1 1 2 0 25 20 15 15 1.0 10 155 0.276599387190865D—01
2 1 2 1 40 30 15 05 1.0 25 162 0.136665163437581D+00
2 2 3 2 55 40 10 1.0 1.0 15 113 0.924821866479653D—01
3 2 2 3 60 35 10 10 15 15 166 0.443353247114632D—-01
3 3 3 4 30 25 10 1.0 20 1.5 103 0.826191642949067D—02
4 3 3 4 45 35 10 05 20 25 120 0.288150089225324D—01
4 4 4 5 60 55 15 15 15 10 125 0.163254589286851D—01




Evaluation of three-centre two-electron Coulomb and hybrid integrals over B functions

897

Table A6. Exact values of the semi-infinite integral K (s) obtained to 15 correct decimal places using
the infinite series given by equation (34). (s = 0.999,n, = A, v = n3+n4+ %, ny =2(n3+ng)+1

and & = {1+ 82.)

ny na omg A Ry Ry 4 o & & max K@)

1 1 2 0 25 20 15 15 1.0 10 155 0.276599387190864D—01
2 1 2 1 40 30 15 05 1.0 25 206 0.136665163437580D+00
2 2 3 2 55 40 10 1.0 1.0 15 170 0.924821866479653D—01
3 2 2 3 60 35 1.0 10 15 15 255 0.443353247114634D—01
3 3 3 4 30 25 10 1.0 20 1.5 233 0.826191642949064D—02
4 3 3 4 45 35 10 05 20 25 25 0.288150089225324D—01
4 4 4 5 6.0 55 15 15 15 10 302 0.163254589286853D—01

Table A7. Evaluation of the semi-infinite integral K(s) using the S D method (53) of order 5
(SDE). (s = 0.999, ny = A, v =n3+na+ 4,0, =23 +ng) + Land & = ¢4 + 2.

ny ns me » Ry Re O o & o SDYY Error

1 1 2 0 25 20 15 15 10 10 02765993872D—-01 0.29D—13
2 1 2 1 40 30 15 05 10 25 0.1366651634D+00 0.74D—12
2 2 3 2 55 40 1.0 10 1.0 1.5 0.9248218665D—01 0.20D—11
3 2 2 3 60 35 10 10 15 15 0.4433532471D—-01 0.94D—12
3 3 3 4 30 25 1.0 1.0 20 15 0.8261916429D—-02 047D—14
4 3 3 4 45 35 10 05 20 25 0.2881500892D—-01 0.30b—13
4 4 4 5 60 55 15 15 15 1.0 0.1632545890D—-01 0.32D—-10

Table A8. Evaluation of the semi-infinite integral K(s) using the H D method (36) of order 7
(HDP). (s =0.999, ny = by v =n3+n4+ 4,0, =203 +ng) + land & = ¢1 + )

ny ng ng A Ry Ry G ) ’3 L4 Hl_);z) Error

1 1 2 0 25 20 15 1.5 1.0 1.0 0.2765993872D—01 0.11D—11
2 1 2 1 40 30 15 05 10 25 0.1366651635D+00 0.20D—10
2 2 3 2 55 40 10 10 10 1.5 0.9248218668D—01 0.28D—10
3 2 2 3 60 35 10 10 15 1.5 0.4433532473D-01 0.15D—10
3 3 3 4 30 25 10 1.0 20 15 0.8261916429D—-02 0.59D—12
4 3 3 4 45 35 10 05 20 25 0.2881500892D—01 0.19D—11
4 4 4 5 60 55 15 15 15 1.0 0.1632545981D—-01 0.88D—09

Table A9. Exact values of the semi-infinite integral 7{(s) obtained to 15 correct decimal places using
the infinite series given by equation (57). (s = 0.001,ny = A, v = n3+ns4+ %, ny =2(n3+ng)+1

and & = {1 + 82.)

ns g om A R0 & 5 & max K(s)

1 1 2 0 50 10 10 1.0 1.0 281 0.284 585738 157 463D—02
2 1 2 1 50 1.0 10 10 10 3006 0.241 687700 195 433D—02
2 2 2 2 50 20 10 10 10 328 0.142508 881938 776 D—02
3 2 3 2 20 10 05 1.0 1.0 91 0.351424 918755 458D+01
3 3 3 3 50 10 05 1.0 1.5 231 0.131 384 356 685 596D—02
4 3 4 3 35 05 05 05 20 101 0.426 258207 725 837D—02
4 4 4 4 20 15 1.5 1.0 15 90 0.344 688 004983 810D—01
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Table A10. Exact values of the semi-infinite integral H(s) obtained to 15 correct decimal places
using the infinite series given by equation (55). (s = 0.001l, ny = X, v = n3 +nq + %,
ny =2(n3+n4)+1land & = &1 +82.)

Rl & & & & max K@

50 1.0 1.0 10 10 278 0.284585738157462D—02
50 1.0 1.0 1.0 10 352 0.241687700195433D—-02
50 20 10 10 10 438 0.142508881938776D—02
20 1.0 05 10 1.0 129 0.351424918755458D+01
50 1.0 05 10 15 368 0.131384356685597D—02
35 05 05 05 20 188  0.426258207725837D—-02
20 15 15 1.0 15 156  0.344688004983 809D—01

ny  ng  ng

B S o S S
AW LN ==
AR WL
AW LW = O >

Table A11. Evaluation of the semi-infinite integral H(s) using the SD method (53) of order 5
(SDE). (s = 0.001, ny = A, v =n3 +na+ 4,0, =23 +ng) + Land & = 1 + )

ny  ona o ong Ri ¢ & & o SsbPY Error

50 1.0 10 10 10 0.2845857381D—-02 0.45D-12
50 1.0 1.0 10 10 02416877012D—-02 0.98D—11
50 20 1.0 1.0 10 0.1425088829D—-02 0.94D-11
20 10 05 1.0 10 0.3514249188D+01  0.93D—13
50 1.0 05 1.0 15 0.1313843563D-02 0.41D-11
35 05 05 05 20 04262582077D—02 0.84D—13
20 15 15 1.0 15 0.3446880050D—-01 0.15D—11

B N L O S
N N S s
ENE NS S S S
AW LD ND = O >

Table A12. Evaluation of the semi-infinite integral H(s) using the H D method (36) of order 7
(HDP). (s =0.001,ny = by v =n3+n4+ 4,0, =203 +ng) + land & = ¢1 + )

ny  ona ong Rl ¢ & & & HDY Error

50 1.0 10 10 10 0.2845857365D—-02 0.16D—10
50 1.0 10 10 10 0.2416876874D—-02 0.13D—-09
50 20 10 10 10 0.1425088662D—02 0.16D—-09
20 10 05 1.0 1.0 0.3514249188D+01  0.12D—-09
50 1.0 05 1.0 15 0.1313843597D—-02 0.30D-10
35 05 05 05 20 04262582077D—02  0.14D—12
20 15 15 1.0 15 0.3446880062D—01  0.13D—-09

B N L O S
AW LN = =
N NSNS S S )
AW LD ND = O >

Table A13. Exact values of the semi-infinite integral H(s) obtained to 15 correct decimal places
using the infinite series given by equation (57). (s = 0.999, ny = A, v = n3 + ng + %,
ny, =2m3+ng)+1and & =& +82.)

ny ng nme A R4 @) &3 ¢ max  K(s)

1 1 2 0 3.0 1.0 1.0 1.0 1.0 111 0.338401 188 224 347D—01
2 1 2 1 40 1.5 1.5 05 1.0 117 0.159408 922 374 825D+01
2 2 2 2 65 20 15 1.0 1.0 198 0.123752317696277D—02
3 2 3 2 30 20 20 10 10 87 0.248 683747 889 112D—01
3 3 3 3 50 15 1.0 1.5 05 136 0.965 754 433724 946D—03
4 3 3 3 50 20 1.0 15 1.0 138 0.242 694 501 548 593D—02
4 4 4 4 40 15 1.0 1.5 1.0 83 0.556 025856 060273D—01
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Table A14. Exact values of the semi-infinite integral H(s) obtained to 15 correct decimal places

using the infinite series given by equation (55). (s = 0.999, ny = A, v = n3 +nq + %,
ny, =2m3+ng)+1land & =& +$2.)

ny ng me A R @) &3 ¢ max  K(s)

1 1 2 0 30 10 10 10 1.0 109 0.338401188224347D—-01

2 1 2 1 40 15 15 05 1.0 135 0.159408922374824D+01

2 2 2 2 65 20 15 1.0 10 246 0.123752317696278D—02

3 2 3 2 30 20 20 1.0 10 113 0.248 683747889 112D—01

3 3 3 3 50 15 10 15 05 197 0.965754433724948D—03

4 3 3 3 50 20 10 15 10 191 0.242 694 501 548 593D—02

4 4 4 4 40 15 10 15 1.0 132 0.556025856060273D—01

899

Table A15. Evaluation of the semi-infinite integral H(s) using the § D method (53) of order 5
(SD;Z’S)). (5 =0.999,n, =A,v=n3+n4+ % ny, =2(m3+ng)+land & = &1+ 8.)

ny ng mg A R4 o < B 71 5522’5) Error

1 1 2 0O 30 10 10 1.0 1.0 0.3384011882D—01 0.38D—13
2 1 2 1 40 1.5 1.5 05 1.0 0.159408 9224D+01 0.92D—-10
2 2 2 2 65 20 15 1.0 1.0 0.1237523131D—-02 0.46D—10
3 2 3 2 30 20 20 1.0 1.0  0.2486837479D—01 0.94D—-12
3 3 3 3 50 15 1.0 15 0.5 09657544370D—-03 0.33D—11
4 3 3 3 50 20 1.0 1.5 1.0 0.2426945011D—-02 0.47D-11
4 4 4 4 40 1.5 1.0 1.5 1.0  0.5560258560D—01 0.17D—11

Table A16. Evaluation of the semi-infinite integral H(s) using the H D method (36) of order 7
(HDP). (s =0.999, 1y = hy v =n3+n4+ 4,0y, =203 +ng) + land & = ¢4 + )

ny g om A Ra L & 4G HDY Error

1 1 2 0 30 10 10 10 1.0 0.3384011882D—-01 0.82D—12
2 1 2 1 40 15 15 05 1.0 0.1594089232D+01 0.86D—08
2 2 2 2 65 20 15 1.0 1.0 0.1237522853D—-02 0.32D—-09
3 2 3 2 30 20 20 1.0 1.0 0.2486837488D—01 0.95D—-10
3 3 3 3 50 15 1.0 15 05 0.9657544452D—-03 0.12D—-10
4 3 3 3 50 20 10 15 1.0 0.2426945060D—-02 0.44D—10
4 4 4 4 40 15 10 15 1.0 0.5560258564D—01 0.36D—10

Table A17. Values of ’CZ?(O)S:Z:SE)) with 15 exact decimal places obtained using the infinite series

with the sine function (52) for evaluating the semi-infinite integrals. (131' =(R;,0,0),i =3,4.)
ng np n3y ng ny, Ry Ry & & 3 U KnggZZgg

1 1 1 1 5 50 35 20 1.0 20 1.0 0.284363465672292D+00
2 1 2 1 7 85 50 20 25 20 25 0.110336129722211D+00
2 2 2 2 9 75 50 10 05 45 50 0.191523537406420D—-01
2 2 3 2 11 75 55 1.0 05 40 45 0.339147631001087D+00
2 2 3 3 13 85 60 1.0 05 40 50 0.368375307409424D—-02
2 2 4 3 15 80 45 10 1.0 40 50 0417362637051378D—-02
2 2 4 4 17 70 45 1.0 05 40 3.5 0.165335595051352D—-01
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Table A18. Evaluation of ICZ?gg:Zigg using § Déz‘s) for evaluating the semi-infinite integrals.
(R = (Ri,0,0),i =3,4)

n300,n400
nyp n2 n3 N4 Ny Ry R4 & &} e ICnTOO‘nZOO Error

5 50 35 20 1.0 20 1.0 0.2843634657D+00 0.19D—15
7 85 50 20 25 20 25 0.1103361297D+00 0.32D—12
9 75 50 1.0 05 45 50 0.1915235374D—-01 0.18D—14
75 55 1.0 05 4.0 45 0.3391476310D+00 0.13D—12
13 85 6.0 1.0 05 40 50 0.3683753074D—-02 0.15D—14
15 80 45 1.0 1.0 40 50 04173626371D-02 0.19D—15
17 70 45 1.0 05 40 35 0.1653355951D—-01 0.11D-16

(NS SR NS RN SR \S I e

(NSRS I NS NS NS R

AR W W NN =

AL W NN = -
=

Table A19. Evaluation of ICngng;‘gg using H l_);z) for evaluating the semi-infinite integrals.

(Ri = (R;,0,0),i = 3,4,

1n300,1400
ng ny n3y na ony Ry Re & & 8 4 Koo Error

5 50 35 20 1.0 20 1.0 0.2843634657D+00 0.53D—13
7 85 50 20 25 20 25 0.1103361297D+00 0.54D—11
9 75 50 1.0 05 45 50 0.1915235374D—-01 0.27D—12
11 75 55 1.0 05 40 45 03391476310D+00 0.18D—10
13 85 6.0 1.0 05 40 5.0 0.3683753074D—-02 0.21D—-12
15 80 45 1.0 1.0 40 50 04173626371D—-02 0.39D—13
17 70 45 10 05 40 35 0.1653355951D—-01 0.44D—14

[NST NS R NS S R NS R
[N S T NS R NS S R
B W W NN =
AW WD ==

Table A20. Values of Hzfggﬁggg with 15 exact decimal places obtained using the infinite series

involving the sine function (57) for evaluating the semi-infinite integrals. (13| = (R1,0,0).)

n300,n400
ng ony ony ongomy R O & & L Hyloh00

5 40 30 15 20 15 0.858504667474839674D—03
7 30 20 1.0 25 25 0.130454565516659766D+00
9 80 25 20 3.0 40 0.100293050393527849D—-03
11 60 10 05 20 35 0.276854998374092832D—01
13 75 10 15 30 35 0.579455660776437258D—04
15 65 10 1.0 30 35 0.426260750526356967D—03
17 65 10 05 25 25 0.290068840927043548D—02

DN NN~
[ASI S I NSRS RN S I
AR W WD =
AW WD N ==

Table A21. Evaluation of HZng:Z;‘gg using SD?’S) for evaluating the semi-infinite integrals.
(R = (R1,0,0).)

n300,n400
ng ony n3 o ongomy RO L & & Moo Error

5 40 30 15 20 15 0.8585046675D—-03 0.71D—14
7 30 20 10 25 25 0.1304545655D+00 0.80D—12
80 25 20 30 4.0 0.1002930481D—-03 0.16D—12
11 60 10 05 20 35 0.2768549984D—01 0.21D—13
13 75 10 15 3.0 35 0.5794556606D—04 0.18D—13
15 65 10 1.0 3.0 35 04262607505D—-03 0.16D—13
65 1.0 05 25 25 0.2900688409D—-02 0.18D—13

NN NN N —
NN NN = —
AR W WD =
W = =

©

&~ W
—_
3
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Table A22. Evaluation of H%&Zigg using H D;Z) for evaluating the semi-infinite integrals.
(Ri = (R1,0,0),)

n300,n400
ny ny n3 ng  ny Ry &1 ¢} &) 4 Hn?OO,n:OO Error

5 40 30 15 20 15 0.8585046687D—03 0.13D—11
7 30 20 10 25 25 0.1304545655D+00 0.20D—11
80 25 20 30 4.0 0.1002930473D—-03 0.31D—-11
60 1.0 05 20 35 02768549984D—-01 0.33D—11
13 75 10 15 3.0 35 0.5794556599D—-04 0.86D—13
15 65 10 1.0 3.0 35 04262607504D—-03 0.13D—12
17 65 1.0 05 25 25 0.2900688410D—02 0.44D—12

(NSRS TR SO (R ST (S R

NN DN N = =

A AW WD =

AW LW ==
=

The numerical values of the semi-infinite integrals Ié(s) and ﬂ(s) are obtained for
s = 0.001 and 0.999. In these regions, the integrand oscillates rapidly. If we let
s = 0 or 1, the integrand will be reduced to the term [¢2 + x*]7"x" j; (vx), because the

terms I%U[R'y(s, x)1/[v(s, x)]* becomes constant and hence the asymptotic behaviour of the
integrand cannot be represented by a function of the form e™** j, (x). Consequently, the
rapid oscillations of the spherical Bessel functions cannot be damped and suppressed by the

exponential decreasing functions k,.

° . n200,n400 ngOO,n4OO
In the numerical evaluation of K, %y, 100 and H, 50,200 We let A and n, vary to show the

efficiency of the new approach in evaluating the integrals of interest in the case where the
oscillations of the integrand are very rapid.
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